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Abstract This paper addresses the problem of estimating the parameters of a
Bayesian network from incomplete data. This is a hard problem, which for com-
putational reasons cannot be effectively tackled by a full Bayesian approach. The
workaround is to search for the estimate with maximum posterior probability. This
is usually done by selecting the highest posterior probability estimate among those
found by multiple runs of Expectation-Maximization with distinct starting points.
However, many local maxima characterize the posterior probability function, and
several of them have similar high probability. We argue that high probability is nec-
essary but not sufficient in order to obtain good estimates. We present an approach
based on maximum entropy to address this problem and describe a simple and effec-
tive way to implement it. Experiments show that our approach produces significantly
better estimates than the most commonly used method.

1 Introduction

Bayesian networks (BN) are well-established probabilistic graphical models that
can represent joint probability distributions over a large number of random vari-
ables in a compact and efficient manner by exploiting their conditional indepen-
dences, encoded through a directed acyclic graph. Inferring BNs from data sets with
missing values is a very challenging problem even if the graph is given [10]. This
paper focuses on inferring the parameters of a BN with known graph from incom-
plete data samples, under the assumption that missingness satisfies MAR (missing-
at-random). The missing data make the log-likelihood function non-concave and
multimodal; the most common approach to estimate the parameters is based on the
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Expectation-Maximization (EM) algorithm [14, 8]. In this case, EM can be used
to search for estimates that maximize the posterior probability of the data (rather
than the likelihood [17, Sec. 1.6], as it was originally designed [8]). Maximizing the
posterior probability rather than the likelihood is recommended, as it generates BN
parameter estimates which are less prone to overfitting [14, 13].

With abuse of notation, in the following we refer to the posterior probability of
the data as the MAP score. Maximizing the posterior probability of the data is by far
the most used idea to infer BN parameters, even if it does not offer the same advan-
tages of a full Bayesian estimation. For instance, because it does not integrate over
the posterior, it cannot average over the uncertainty about the parameter estimates.
On the other hand, estimation can be performed by fast algorithms, such as EM,
while the computational cost of the full Bayesian approach to infer BN parameters
is simply prohibitive, especially in domains with many variables. EM almost always
converges to a local maximum of the MAP score, so multiple starts from different
initialization points are adopted with the aim of avoiding bad local maxima, and
eventually the estimate corresponding to the highest MAP score is selected.

One could expect an improvement in the estimation of the parameters by using
an algorithm that always obtains the global maximum solution of the MAP score
instead of a local one, something that cannot be guaranteed with EM. To check this
conjecture, we implement an optimization framework which is ensured to find, at
least in small-sized problems, the global maximum score. For large domains, such
task is computationally intractable, as the problem is known to be NP-hard. How-
ever, we show empirically that the global solver produces worse parameter estimates
than EM itself does, despite finding estimates with higher MAP scores. The global
maximum of the MAP score seems thus to be subject to some type of overfitting,
highlighting severe limitations in the correlation between MAP score and the quality
of the parameter estimates. In turn, this opens a question about whether selecting the
estimate with highest MAP score is the best approach. Different EM runs typically
achieve very close values of the MAP score, and yet return largely different parame-
ter estimates [13, Chap. 19]. Selecting the parameter estimate which maximizes the
MAP score is not a robust choice, since the difference in score among competing es-
timates can be very thin. We note that approaches such as the Bayesian Information
Criterion (BIC) do not constitute a solution to this problem: since all the competing
estimates refer to the same graph, the BIC (and other similar approaches) would
simply select the estimate with highest MAP score.

In view of such considerations, we propose the following idea to estimate BN
parameters: One should select the least informative estimate, namely the maximum
entropy one, among those which have a high MAP score. The maximum entropy
criterion can be stated as: "when we make inferences on incomplete information, we
should draw them from that probability distribution that has the maximum entropy
permitted by the information which we do have® [12]. Thus, our criterion is applied
in two steps: i) computation of the highest MAP score; ii) selection of the maximum
entropy estimate, among those with high MAP score. We implement our criterion
on top of both our new global solver and on top of a multi-start EM procedure. The
idea of using entropy to estimate parameters of BNs from incomplete samples has
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been previously advocated [4, 5, 7, 11, 22], yet our approach and those considerably
differ: either they work with continuous variables and very few parameters, or they
employ other inference approaches, such as the imprecise Dirichlet model [21], to
later use entropy as criterion. We deal with discrete variables with BNs of a great
numbers of parameters, and interpret the entropy criterion in a softer manner (as
explained later on). Entropy methods have also been applied before for dealing with
the uncertainty about the missingness mechanism, where the nature of the censoring
data is unknown [2, 19] (we instead assume MAR).

This paper is divided as follows. Section 2 presents the estimation problem and
the methods to tackle it. Expectation-Maximization (EM) (Section 2.1) and a non-
linear formulation (Section 2.2) are described, which are then compared in Section
2.3. The entropy-based idea is presented in Section 2.4. Section 3 presents experi-
ments comparing the methods. Finally, Section 4 presents our concluding remarks.

2 Methods

We adopt Bayesian networks as framework for our study. Therefore, we assume that
the reader is familiar with their basic concepts [13]. A Bayesian network (BN) is a
triple (¢, 2, &), where ¥ is a directed acyclic graph with nodes associated to ran-
dom variables 2" = {Xi,...,X,} over discrete domains {Qy,,...,Qx,} and Z isa
collection of probability values p(x;|7;) with ije_QXl_ p(xj|mj) =1, where x; € Qx;
is a category or state of X; and 7; € Xxeyy;£2x a (joint) state for the parents IT ; of
X;in¥.In a BN, every variable is conditionally independent of its non-descendants
given its parents, according to ¢. Given its independence assumptions, the joint
probability distribution represented by a BN is obtained by p(x) = [T, p(x;|;),
where x € Q- and all x;, 7; (for every j) agree with x. Nodes of the graph and their
associated random variables are used interchanged. The graph ¢ and the variables
Z (and their domains) are assumed to be known; 6y, is used to denote an estimate
for p(v|w) (withv € Qy, w € Qy, VW C 2.

We denote as y' the i-th incomplete instance and by Y/ C .2 the set of observed
variables of the i.i.d. sampled instance i. Given the incomplete training data y =
(y',...,¥") with N instances such that each y’ € Qy:, we denote by N, the number
of instances of y that are consistent with the state configuration u € Qy, where
U C Z". Parameters are estimated by maximizing the posterior probability given y:

N
6 = argmax Sg(y) = argmax (Zlog Oy + a(9)> , (1)
6 6 i=1
where o represents the prior:

n Qi x; ESS
o(6) =log [TITL 16, ;" and o,z = 15 == 5
J J

J=1xj 7
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where ESS stands for equivalent sample size, which we set to one, as usually done
in the literature [13]. The argument y of Sy is omitted from now on (S means score).

In the experiments, in order to evaluate the quality of estimates, we measure the
Kullback-Leibler (KL) divergence between the joint distribution represented by the
true BN and the estimated BN (which we name joint metric); moreover, we also use
the joint marginal distribution of all leaf nodes (named reasoning metric). The latter
measures how close a reasoning about those leaf variables with the estimated model
is to that of the true model:

KLo(®)= ¥ poiog (%),

z€Qyg

where Z are the leaves and p(z) = ergﬂ/,.\z p(x,z) (and respectively for ;). This
metric requires marginalizing out all non-leaf variables, so it involves all variables
in the computation. Because of that, local errors in the estimates can compensate
each other, and tend to smooth the differences among methods.

2.1 Expectation-maximization

For a complete data set (that is, Y! = 2 for all i), we have a concave function on 6:

n
SQ = Z ZZN/L]',TC]' log 9X_,‘|71'j7

j=1xj 7w
where Ny o = Ny, n; + O, z;, and the estimate éxj-lﬂj =Ny, 2,/ (L N)’cjﬂf) achieves

. . Xj7
highest MAP score. In the case of incomplete data, we have

N n
Sp = ZlogZHGx;ln;—i-a(G), )
i=1 i j=1

zi =

where x = (y',z') = (x},...,x}) represents a joint state for all the variables in
instance i. No closed-form solution is known, and one has to directly optimize:

maxg Sy, subject to

ViVa 0 ) O, =1, V¥ Va1 6y, > 0. 3)
Xj

The most common approach to optimize this function is to use the EM method,
which completes the data with the expected counts for each missing variable given
the observed variables, that is, variables Z'; are completed by “weights” 95‘3/,- for

J
each i, j of a missing value, where 0¥ represents the current estimate at iteration k.
This idea is equivalent to weighting the chance of having Z} = z; by the (current)

distribution of Z; given y' (this is known as the E-step, and requires computations
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over the BN instantiated with 2 = 6* to obtain the estimated probability of missing
values). Using these weights together with the actual counts from the data, the suf-
ficient statistics values N)’ij,rj are computed for every x;,7;, and the next (updated)

. Ak+1 : . . .kt _ Atk Tk
estimate 6" is obtained as if the data were complete: ij‘ % = Ny x; /(s ijnj),

where N)/c];,nj = ijﬂj + Qi x; (this is the M-step). Because in the first step there is
no current estimate °, an initial guess has to be used. Using the score itself to test
convergence, this procedure achieves a saddle point of Eq. (1), which is usually a lo-
cal optimum of the problem, and may vary according to the initial guess 6°. Hence,
it is common to execute multiple runs of EM with distinct initial guesses and then
to take the estimate with highest score among them.

2.2 Non-linear solver

In order to understand whether the good/bad quality of estimates is not simply a
product of EM pitfalls to properly optimize Eq.(1), we build a systematic way to
translate the parameter estimation into a compact non-linear optimization problem,
which is later (globally) solved with an optimization suite. The idea of directly opti-
mizing the score function is not new (see e.g. [17]). Nevertheless, we are not aware
of a method that translates the original score function into a simple formulation us-
ing symbolic variable elimination. The main issue regards the internal summations

CO—=CO—=CO—CO—CD

Fig. 1 Network BNy, used in the description of the algorithm and later in the experiments; nodes
affected by the missingness process have a grey background.

of Equation (2), because there is an exponential number of terms. We process them
using a symbolic version of a variable elimination procedure as in [3], but the elimi-
nation method is run with target 6. Instead of numerical computations, it generates
the polynomial constraints that precisely describe 6y in terms of (the still unknown)
local conditional probability values of the specification of the BN. Because these
values are to be found, they become the variables to be optimized in the polynomi-
als. To clarify the method, we take the Example of Figure 1, where E,U might be
missing, while the others are always observed. In this example, we need to write the
constraints that describe 6, ;i ,i, because these are instances in the data with missing

u' and ¢'. The score function is: 6 = argmax max, s, subject to Egs. (3) and

s<a(f)+ Z log 6, 4i i + Z 108 6, pi 4i oi i » 4)

icNM ieENM

where N, N are index sets of the instances with and without missing values,
respectively. Note that an extra optimization variable s was introduced to make the
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objective function become a constraint (for ease of expose). All 6y, (for each possi-
ble argument v, w) and s are unknowns to be optimized by the solver. The summation
in Equation (4) can be shortened by grouping together elements related to the same
states, and variables with no missing value can still be factorized out, obtaining:

s<a(6 +ZN log9¢,+ZNblog9b+ Z log ;i i 4i
ieNM

+Z 10g9u\a+ZNbe 10g6e\b+ Z etuloget\eu 5

e,t,u

This equation is automatically built by the symbolic variable elimination proce-
dure. As one can see, in this particular example the marginal distributions p(A) and
p(B) can be estimated by the standard closed-form solution, as they are roots of the
network and (in this example) their corresponding data are always complete. How-
ever, this is not true for every term in the equation. For instance, the summation
Yienm 10g6;i i i, where the sum runs over the categories a',b',t', comes in Eq.(5)
and involves elements that are not direct part of the network specification. It is ex-
actly the job of the symbolic variable elimination to obtain the extra constraints:

t’\a’ e Z eu\a’ “Ytilu,e s eti\ai,b‘ Z e|bt l’\a’ e (6)

These equations tie together the auxiliary optimization unknowns (such as 6,i,i ,
and 6, i) and the actual parameter estimates of interest, which are part of the
specification of the network (such as 6,,i, 6. 0,5). We emphasize that these
derivations are not done by hand (with the user interaction), but instead they are au-
tomatically processed by the symbolic variable elimination procedure. The left-hand
side of Equation (6) comes from the symbolic (variable) elimination of u, while the
right-hand side comes from the symbolic elimination of e. Together, they create a
mathematical correspondence between 6;i,i ;i and actual network parameters. Af-
ter the symbolic preprocessing, it is up to the polynomial programming solver to
optimize the non-linear problem. We have implemented an adapted version of the
reformulation-linearization technique [20], which is a global solver for it.

To make a parallel, the EM algorithm would have to compute p(E,Ula’,b',t)
(with & = ék) for each instance i in the data set, in order to obtain the sufficient
statistics of iteration k. Each such computation is in fact a procedure of similar
complexity to the one we just did. The main difference between the methods is that
we do not work with numbers but with a symbolic version of the computation.

2.3 Global solver vs EM-MAP

We define as EM-MAP the approach which performs multiple runs of EM using
different initialization points, eventually selecting the estimate corresponding to the
highest MAP score. As explained in Section 2.2, we implemented a global solver
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based on non-linear programming. In our experiments, the global solver achieved
slightly higher MAP scores than EM-MAP, yielding however worse parameter es-
timates than EM-MAP. This phenomenon can be seen from Figure 2, where points
above the diagonal indicate better estimate for EM-MAP (using the joint metric
as criterion) and points below the diagonal indicate better estimate for the global
solver. Similar results were found in many experiments (not shown) comparing the
global solver vs. EM-MAP, which suggests that selecting the estimate with the high-
est MAP score has drawbacks, being for instance subject to overfitting.

*Te //
@ //
2
E . ¢ //
5 le
S 1 Hme S //
o]
-
A 2
0 L T T
0 2
EM-MAP

Fig. 2 Scatter plot of KL-divergences in the joint metric over data sets produced by BN (detailed
in the experiments section). Points above the diagonal show a worse estimate for the global solver,
compared to EM-MAP.

2.4 Discriminating high-score estimates by entropy

In order to overcome the drawback just described, we propose the following cri-
terion: to pick the parameter estimate with maximum entropy, among those which
have a high MAP score. To identify the estimates with high MAP score we adopt
a criterion similar to the Bayes factor. When discriminating among two competing
models m; and m; on the basis of the data y, the evidence in favor of m; can be
considered substantial only if the Bayes factor P(y|m;)/P(y|my) is at least some
threshold, for instance 2 or 3 [9], where P(y|m) represents the marginal likelihood
given m: P(y|m) = [P(y|m,0)p(60)d6. Because of the challenges that come with
the missing data, we adopt a ratio of MAP scores (a full Bayesian approach would
integrate over the parameters, but such computation would be intractable). We as-
sume that if the ratio of the MAP scores among two competing parameter estimates
is less than 2, there is no substantial evidence for preferring one over the other. To
choose among the competing estimates with high MAP score (whose MAP score is
at least a half of the maximum MAP score known for the data set under consider-
ation), we use the maximum entropy, thus choosing the least informative estimate
given the available information [12]. This approach differs from standard maximum
entropy inferences previously reported [11, 22] since we first check for high score
estimates, and then maximize entropy among them. It can be formally written as:
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6 = argmax Z ZZ Oy ,n;108 6,7, subjectto Sg+c> s, ™
)

=17 xj

where the function to be maximized is the local entropy of a Bayesian network [16],
s* = maxg Sy is the highest MAP score for the problem (which we compute before
running this optimization), and c is the logarithm of the ratio of the MAP scores.

The optimization of Eq. (7) maximizes entropy, being however constrained to
ensure that the MAP score Sy is high. In fact, we found our result to be robust on
the threshold ¢ when letting it vary between 2 and 3.

Entropy

0 0.2 0.4 0.6 0.8 1
EM-MAP

Fig. 3 Scatter plot of KL-divergences in the joint metric over data sets produced by BN (detailed
in the experiments section). Points below the diagonal show a better estimate for the global solver
coupled with the entropy criterion compared to EM-MAP.

If it is to use the previously mentioned global solver, the optimization is tack-
led in two steps: first by globally optimizing the MAP score as already described,
and then by solving Egs. (7). The quality of the estimates obtained in this case dra-
matically improves, as can be seen from Figure 3. As the problem is NP-hard, we
cannot expect this solver to obtain a global optimal solution in all problem instances.
Because of that, we adapted our idea to work also within EM. In this case, we se-
lect, among the various estimates generated by the multi-start EM, the maximum
entropy estimate among those which have a high MAP score. The high MAP score
is checked by computing the ratio of the MAP score with respect to the highest
MAP score obtained in the different EM runs (thus, the computation of the high-
est score is only done in an approximate fashion). We call the resulting approach
EM-entropy. This differs from the maximum entropy approach described before,
because we focus only on the many estimates generated by the EM runs. The great
benefit is that the implementation becomes straightforward: only a few changes on
top of an already running EM suffice. The drawback of EM-entropy is that the true
maximum entropy estimate might well be a non-optimum estimate in terms of score.
Because of that, even if we increase the number of EM runs, the empirical entropy is
still confined to saddle points of the score function, and the resulting estimate may
differ. Nevertheless, the experiments will later show that the EM-entropy also pro-
duces significantly better estimates than MAP. An insight of the reason for which
EM-entropy outperforms EM-MAP is given by Figure 4, which shows an experi-
ment where higher MAP scores do not necessarily imply a better estimate; instead,
when comparing estimates that already have high MAP score (the right-most points



A maximum entropy approach to learn Bayesian networks from incomplete data 9

in Figure 4), entropy is more discriminative than the MAP score itself and has also
a stronger correlation with the Kullback-Leibler (KL) divergence.

KL=1.8
751

KL=1.4

KL=1.0

Entropy

6.5

KL=0.6

KL=0.2

5-'§4o -438  -436  -434  -432  -430  -428
MAP score

Fig. 4 Relation between KL divergence, entropy and score; darker points represent lower KL
divergence between true and estimated joint distributions. The figure refers to one thousand EM
runs performed on an incomplete training set of 200 samples.

In any BN with more than a couple of variables, the number of parameters to
estimate becomes quickly large and there is only a very small (or no) region of
the parameter space with estimates that achieve the very same global maximum
value. However, a feasibility region defined by a small percentage away from the
maximum score is enough to produce a whole region of estimates, indicating that
the region of high score estimates is almost (but not exactly) flat. This is expected
in a high-dimensional parameter space of BNs.

3 Experiments

We perform a empirical study using different BN graphs, sample sizes N and miss-
ingness process mp. The experiments were run using the open-source Bayesian Net-
work Toolbox (BNT) [18] for Matlab.

A triple (BN graph, N,mp) identifies a setting; for each setting, we perform 300
experiments, each defined as follows: a) instantiation of the reference BN; b) sam-
pling of N complete instances from the reference BN; c) application of the missing-
ness process; d) execution of EM from 30 different initializations; e) execution of
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our solvers and estimation procedure using the different methods. We evaluate the
quality of the estimates through the joint metric and the reasoning metric already in-
troduced. We analyze the significance of the differences through the non-parametric
Friedman test with significance level of 1%. By a post-hoc procedure applied on the
statistic of the test, we generate a rank of methods for each setting and each metric.

The first set of experiments regards the BN graph of Figure 1 (named BNy),
which has been used in previous sections to illustrate the methods. Variables A (bi-
nary) and B (ternary) have uniform distributions and are always observed; variables
U, E and T are binary (assuming states true and false); the value of T is defined
by the logical relation T = E AU. Variable T is always observed, while U and E
are affected by the missingness process: in particular, both U and E are observed
if and only if T is true. Therefore, E and U are either both observed and positive,
or non-observed. The missingness process is MAR [13, Sec. 19.1.2] because given
T (always observed) the probability of U and E to be missing does not depend on
their actual values; E and U are missing in about 85% of the sampled instances. We
assume the conditional probabilities of T to be known, thus focusing on the diffi-
culty of estimating the probabilities related to variables U and E. For both (BNy,
100,MAR) and (BN, 200,MAR) and for both the joint and the reasoning metric,
the Friedman test returned the following rank: 1st) entropy; 2nd) EM-entropy; 3rd)
EM-MAP. The boxplots in the first row of Figure 3 show that the entropy-based
methods largely improve over EM-MAP; interestingly, the simple EM-entropy al-
ready delivers much of the gain achieved by the more sophisticated entropy method
which relies on globally optimal solvers.

In a second set of experiments we use the graph A — B — C, which we call
BN,. We consider two different configurations of number of states for each node:
5-3-5 (meaning A,C with 5 states and B with 3) and 8-4-8 (A,C with 8 states and
B with 4). In both cases, we make B randomly missing in 85% of the instances.
Each experiment now includes an additional step, namely the generation of random
parameters of the reference BN. From the viewpoint of how realistic is this exper-
iment, one may see BN, as a subnetwork (possibly repeated many times) within a
much larger BN. For instance, if we see A as the joint parent set of B, and C as the
joint children of B, this experiment regards the very same challenges of estimating
a node’s parameters (in this case B) with missing values in a BN of irrespective
number of variables. This graph also captures the BN that could be used for cluster-
ing with EM [6]. Despite the simple graph of this BN, the estimation task requires
to estimate from incomplete samples a non-negligible number of parameters, refer-
ring to nodes B and C: respectively 2-5+4-3 =22 and 8-3+47-4 = 52, for each
used configuration. To these numbers, one should add the marginals of A, which are
however inferred from complete samples and whose estimate is thus identical for all
methods. We adopted N=300 for the 5-3-5 configuration and N=500 for the §-4-8
configuration. In both settings and the two metrics, we obtained the same rank: 1st)
entropy; 2nd) EM-entropy; 3rd) EM-MAP. It is worth noting again that the simple
EM-entropy improves over EM-MAP. The boxplots are shown in the second row of
Figure 3.
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Fig. 5 Boxplot of KL-divergences for the joint metric over 300 runs of the experiment with
BN; and BN»(the scale changes between top and bottom graphs.)

n=100 n=200
Net q= 30% 60% 30% 60%

Asia joint  0.96 0.90 0.96 0.91
Asia  reasoning 0.92 0.86 0.99 0.89
Alarm joint  0.93 0.88 0.93 0.89
Alarm  reasoning 0.95 0.94 0.97 0.96
Random20  joint  0.94 0.89 0.92 0.89
Random?20 reasoning 0.92 0.88 0.97 0.92

Table 1 Relative medians of KL divergence, i.e., medians of entropy are presented (experiment-
wise) divided by the median of MAP. Smaller numbers indicate better performance; in particular,
values smaller than 1 indicate a smaller median than MAP.

To further compare the behavior of EM-entropy and EM-MAP, we run exper-
iments using well-known BNs: i) the Asia network (8 binary variables, 2 leaves)
[15], ii) the Alarm network (37 variables with 2 to 4 states each, and 8 leaves) [1]
and iii) BNs with randomly generated graphs with 20 variables. In each experiment,
we randomly re-generated the parameters of the reference networks. In the case of
randomly generated BN graphs, the experimental procedure also includes the gen-
eration of the random graph, which is accomplished before drawing the parameters.
Given two variables X; and X}, an arc from X; to X; is randomly included with prob-
ability 1/3 if i < j (no arc is included if j > i, which ensures that the graph is acyclic
and has no loops). Furthermore, the maximum number of parents of each variable is
set to 4 and the number of states per variable is randomly selected from 2 to 4. After
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that, the experiments follow the same workflow as before. We consider a MCAR!
process, which makes each single value missing with probability g; we use g equals
to 30% and 60%; we moreover consider sample sizes N of 100 and 200.

In all these experiments, EM-entropy performs significantly better than EM-
MAP, with respect to both the joint and the reasoning metric. The quantitative dif-
ference of performance can be seen in Table 1, which reports the relative medians
of metrics, namely the medians of EM-entropy in a certain task, divided by the me-
dian of EM-MAP in the same task. The improvement of the median over EM-MAP
ranges from 1% to 14%; most importantly, it is consistent, occurring in all settings.
As a final remark, the difference in performance increases when the estimation task
is more challenging, typically when the percentage of missing data increases.

4 Conclusions

The most common approach to estimate the parameters of a Bayesian network in
presence of incomplete data is to search for estimates with maximum posterior
probability (MAP). MAP estimation is no harder than maximum likelihood esti-
mation, over which it should be preferred because it yields estimates that are more
resilient to overfitting. MAP estimation is much faster than full Bayesian estima-
tion, but does not offer the same advantages of the latter. Many local maxima are
usually present and several of them present high posterior probability. Selecting the
one which maximizes it is not robust, since the difference among these competing
estimates is generally very thin.

We presented an approach to select the least informative estimate, namely the
maximum entropy one, among those which have a high posterior probability; our
empirical analyses indicate that this approach consistently improves the quality of
results. The approach has been implemented with a global solver developed by us
and within EM, obtaining in both cases a significant improvement when compared
to MAP. In particular, the EM-entropy method for inferring Bayesian networks can
be promptly implemented on top of any existing EM implementation for that task.
As a future work, we plan to apply these ideas in more general settings of param-
eter estimation problems from incomplete samples, not only restricted to Bayesian
networks.

Acknowledgements The research in this paper has been partially supported by the Swiss NSF
grant no. 200021_146606/1.

! MCAR (or missing completely at random) indicates that the probability of each value being
missing does not depend on the value itself, neither on the value of other variables.
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