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Abstract—Credal nets are probabilistic graphical models which
extend Bayesian nets to cope with sets of distributions. This
feature makes the model particularly suited for the implementa-
tion of classifiers and knowledge-based systems. When working
with sets of (instead of single) probability distributions, the
identification of the optimal option can be based on different
criteria, some of them eventually leading to multiple choices.
Yet, most of the inference algorithms for credal nets are designed
to compute only the bounds of the posterior probabilities. This
prevents some of the existing criteria from being used. To
overcome this limitation, we present two simple transformations
for credal nets which make it possible to compute decisions
based on the maximality and E-admissibility criteria without any
modification in the inference algorithms. We also prove that
these decision problems have the same complexity of standard
inference, being NPPP-hard for general credal nets and NP-hard
for polytrees.

I. INTRODUCTION

A Bayesian net is a probabilistic graphical model which
allows the specification of a joint probability mass function
by means of a collection of conditional mass functions, each
collection associated only with a single variable. Such a de-
composition is made possible by the conditional independence
relations among the model variables X := (X1, . . . , Xn),
which are graphically depicted by feeding a directed acyclic
graph G (nodes are in one-to-one correspondence with the vari-
ables) with the Markov condition.1 Under these assumptions,
a set of conditional mass functions (one for each joint value of
the parent variables, for each variable) is sufficient to compute
the joint P (x) :=

∏n
i=1 P (xi|πi), where the state πi of the

parents of Xi is consistent with the state x of X [1]. To gain
robustness with this modeling, a credal net can be specified
instead [2]. It is obtained by replacing each conditional mass
function P (Xi|πi) with a closed convex set of distributions
(or credal set) K(Xi|πi). Similar to a Bayesian net, which
defines one joint mass function, a credal net defines one joint
credal set, as follows:

K(X) = CH

P (X)

∣∣∣∣∣∣
P (x) :=

∏n
i=1 P (xi|πi)

P (Xi|πi) ∈ ext[K(Xi|πi)]
∀i = 1, . . . , n ∀πi

 , (1)

where the notation ext[·] is used for the extreme points of the
credal sets and CH for the convex hull operator. A typical
inferential task on credal nets consists in the updating of the

1According to the Markov condition for directed graphs any variable is
conditionally independent of its non-descendants non-parents given its parents.

probabilities for a variable of interest X ∈ X, given some
evidence xE about other variables XE ⊆ X\{X}. For credal
nets, this is intended as the computation of the posterior credal
set K(X|xE), which is obtained from the joint credal set (1)
by elementwise marginalisation and conditioning.

Classifiers and knowledge-based expert systems are typical
applications of credal nets [3], [4]. In both cases, one is
typically interested in deciding which one is the most likely
value of X among the elements of its possibility space X ,
on the basis of the observed evidence xE . This decision
should be based on K(X|xE). For Bayesian nets, where
K(X|xE) collapses into a single conditional mass function
P (X|xE), this simply corresponds to the identification of the
most probable option x∗ := arg maxx∈X P (x|xE).2 Unlike
the Bayesian case, such a decision task can be addressed
in many ways in the credal case, where different criteria,
some of them eventually returning more than a single option,
have been proposed (Sect. II). Yet, most of the inference
algorithms for credal nets are not designed to compute the
posterior credal set, but only its bounds, i.e., P (x|xE) :=
minP (X|xE)∈K(X|xE) P (x|xE) and (similarly) P (x|xE). This
prevents some of those criteria from being adopted. It basically
means that, when coping with credal nets, the higher modeling
freedom provided by using credal sets is partially wasted when
making decisions, because of the lack of suitable inference
algorithms. The goal of this paper is to fill this gap. This
is achieved by specific transformations augmenting the credal
net with auxiliary variables (Sect. III) that make possible to
determine, with standard algorithms, the set of optimal options
according to two of the major decision criteria, namely max-
imality (Sect. IV) and E-admissibility (Sect. V).3 Apart from
some specific applications to maximality-based classification
[4], decision making based on these two criteria for general
credal nets is an almost unexplored field of investigation. The
computational complexity of these decision problems should
be therefore considered. Notably, as it happens for the standard
decision problem consisting in the evaluation of the bounds of
the posterior, the problems discussed in this paper are proved
to be NPPP-hard for general and NP-hard for polytree-shaped
(i.e., singly-connected graphs) credal nets (Sect. VI).

2This corresponds to the maximisation of the expected utility with a zero-
one loss. Utility functions are not explicitly reported for notational ease.

3For maximality, this issue has been already discussed in [5]. Yet, the
solution proposed in that paper is approximate and referred only to queried
variables associated to nodes without parents or without children.



II. DECISIONS BASED ON CREDAL SETS

First let us review the main decision criteria proposed within
the framework of credal sets.4 We consider decisions based
on the posterior credal set K(X|xE) for a generic credal
net, but the definitions below can be referred to any credal
set. Generally speaking, different distributions in a credal set
can assign the highest probability to different options. This
basically means that there is not a single straightforward way
to extend to the credal case the decision criterion adopted in
the Bayesian framework. The so-called Γ-maximin criterion
represents a pessimistic approach which takes the option
maximising the lower probability, i.e.,

x∗ := arg max
x∈X

P (x|xE), (2)

while the optimistic version, with the upper instead of the
lower probability, is called Γ-maximax. Another approach
consists in evaluating the overlapping among the posterior
probability intervals and reject the states whose upper prob-
abilities are smaller than the lower probability of some other
state. This is called interval dominance, and generally leads
to a set X ∗ ⊆ X of optimal options, where:

X ∗ :=
{
x′ ∈ X |@x′′ ∈ X : P (x′′|xE) > P (x′|xE)

}
. (3)

The above mentioned criteria require only the evaluation of
the posterior lower and upper probabilities for each x ∈ X . A
number of algorithms have been proposed to compute these
probabilities. Other, more sophisticated, criteria for decision
have been proposed, but, at least in their formulation, they need
the posterior credal set available. In particular, according to the
maximality criterion, a state is rejected if, for each element
(or extreme point) of the credal set, there is another state with
higher probability, i.e., the maximal states are:

X ∗ :=

{
x′ ∈ X

∣∣∣∣@x′′ ∈ X :
P (x′′|xE) > P (x′|xE),
∀P (X|xE) ∈ K(X|xE)

}
.

(4)
A more cautious approach is E-admissibility, where only
options which are optimal for at least a distribution in the
posterior credal set are adopted, i.e.,

X ∗ :=

{
x′ ∈ X

∣∣∣∣∣ ∃P (X|xE) ∈ K(X|xE) :
P (x′|xE) > maxx′′∈X

x′′ 6=x′
P (x′′|xE)

}
.

(5)
Despite a substantial lack of unanimity about the best way to
take decisions based on credal sets, these two latter criteria
can be regarded as a reasonable compromise between the
necessary caution when taking decisions and the need of
avoiding a too high number of possible options [7].5 Yet,
the available algorithms for credal nets inference cannot be
directly employed to identify the sets in (4) or (5), and this
substantially reduces the advantages of a credal modeling. In
the next sections we provide a solution to this problem.

4See [6] or [7] for a more detailed overview and discussion on this topic.
5Note that Γ-maximin/max return a single option, while the optimal options

for interval dominance include those for E-admissibility and maximality.

III. COMPUTING EXPECTATIONS

Let us first consider the very simple case where the credal
net we work with is made of a single (queried) variable X ,
while the set of observed variables is empty. We consider a
real function g : X → R, which is also called gamble [8]. The
lower bound for the expectation of this gamble with respect
to the credal set K(X) is:

E(g) := min
P (X)∈K(X)

∑
x∈X

P (x) · g(x). (6)

Now, let us augment the net with a binary variable Y , with
states {0, 1}, which is assumed to be a child of X . For the
conditional credal sets of Y given X we adopt a “Bayesian”
specification: each conditional credal set is made of a single
element, which can be completely specified by the values of
P (Y = 0|x), for each x ∈ X . After this quantification, the
lower probability for the first state of the auxiliary variable
with respect to the augmented credal net is:

P (Y = 0) = min
P (X)∈K(X)

∑
x∈X

P (x) · P (Y = 0|x). (7)

Thus, setting P (Y = 0|x) := g(x) for each x ∈ X , we
have that (7) coincides with (6), i.e., E(g) = P (Y = 0). In
other words, by means of an appropriate quantification of the
conditional probabilities for the auxiliary node, the lower (and
similarly the upper) expectation of a gamble corresponds to a
lower (upper) probability of the auxiliary node.

Note that in the above derivation we are implicitly assuming
that the gamble g has values only in the [0, 1] interval. If this is
not the case, we can easily bypass the problem by considering
the “normalised” gamble:

g̃(x) :=
g(x)−minx∈X g(x)

maxx∈X g(x)−minx∈X g(x)
, (8)

whose values can be clearly interpreted as probabilities. This
means that we can always compute the expectation of gamble
g̃ as in (7) and then obtain the lower expectation for the
original gamble as follows:6

E(g) = min
x∈X

g(x) + [max
x∈X

g(x)−min
x∈X

g(x)] · E(g̃). (9)

Finally, it is easy to note that the augmentation of Y to X is
a local transformation which can be equivalently performed if
the net is defined over more than a single variable, by simply
replacing K(X) with K(X) as in (1). Similarly, the above
derivation can be performed in the same way even if the set of
observed variables XE is not empty. Summarising, in a generic
credal net over X, we can express the conditional lower
expectation for a (normalised) gamble over a queried variable
X given evidence xE as the posterior lower probability, on
the augmented net, for the first state of the auxiliary child Y ,
i.e., E(g̃|xE) = P (Y = 0|xE), where the latter quantity can
be computed by any standard updating algorithm for credal
nets.

6This is simply based on the fact that, given a gamble f , if α and β are
real constants, with α positive, E[αf + β] = αE[f ] + β. This relation can
be easily proved (or found in [8]).



IV. SOLVING MAXIMALITY

In the previous section we showed how to compute the
posterior lower and upper expectations for a generic gamble
associated to a variable in a credal net. As a simple corollary
of this result, we can address the maximality criterion as
in (4). In fact, in order to detect these optimal options, we
should check, for each pair x′, x′′ ∈ X , whether or not
P (x′′|xE) > P (x′|xE) for each P (X|xE) ∈ K(X|xE).
Notably, this corresponds to decide whether or not:

E(I{x′′} − I{x′}|xE) > 0, (10)

where I{x} is an indicator function (i.e., the gamble which is
non-zero only for X = x). Thus, in other words, maximality
can be checked by evaluating, for each x′, x′′ ∈ X , the lower
expectation of the gamble:

gx′,x′′(x) =

 −1 if x = x′

+1 if x = x′′

0 otherwise
. (11)

This task can be solved by exploiting the transformation
outlined in the previous section. Algorithm 1 can be therefore
used to address maximality with credal nets. Note that the
condition in the fourth row is equivalent to that in (10), and
can be tested by evaluating P (Y = 0|xE) with some updating
algorithm for credal nets.
Algorithm 1
1. X ∗ := X
2. for x′ ∈ X
3. for x′′ ∈ X
4. if E(g̃x′,x′′) > 1

2
5. X ∗ := X ∗ \ {x′}

V. SOLVING E-ADMISSIBILITY

Now let us consider how to address the E-admissibility. In
order to evaluate whether or not x′ belongs to X ∗ defined as
in (5), we have to check, for each x′ ∈ X , whether or not:7

max
P (X|xE)∈K(X|xE)

[
P (x′|xE)− max

x′′∈X
P (x′′|xE)

]
> 0. (12)

Note that, unlike the case of maximality as in (10), the
left-hand side of the E-admissibility test in (12) cannot be
reformulated as the (upper) expectation of a gamble. Yet, the
same graphical transformation presented in Sect. III, with a
credal quantification of the conditional probabilities for Y can
be used to obtain a similar result and check E-admissibility
with standard algorithms for credal nets.

Let us first show how to do that in a simple situation where
the net has a single variable X and is Bayesian, i.e., we have a
probability mass function P (X) associated to X . In this case,
(12) rewrites as:

max
x′′∈X

[P (x′)− P (x′′)] > 0. (13)

7Following (5), we should add condition x′′ 6= x′ in the maximum. Yet,
as this case makes the difference zero, it has no effect on the overall test.

Now let us augment this Bayesian net with an auxiliary binary
child Y as in Sect. III. Yet, this time we consider a credal
quantification of the conditional probability table P (Y |X). In
particular, the quantification is extensive, this meaning that the
table takes values in a collection {Px′′(Y |X)}x′′∈X . For the
corresponding credal net, we have:

P (Y = 0) := max
x′′∈X

∑
x∈X

Px′′(Y = 0|x) · P (x). (14)

In particular, for the quantification of the tables we assume
Px′′(Y = 0|x) = g̃x′′,x′(x), for each x, x′′ ∈ X . In this case,
by a derivation similar to that considered in Sect. III, it is
easy to see that (14) becomes equivalent to the left-hand side
of (13). Again, by considerations similar to those reported at
the end of the previous section, we can extend the result to
the case where the net is credal, with multiple variables and
non-empty evidence. Thus, we can also use E-admissibility
for decision making in credal nets. Algorithm 2 shows the
procedure, with the test in the third row to be checked by
credal nets inference algorithms.
Algorithm 2
1. X ∗ := ∅
2. for x′ ∈ X
3. if P (Y = 0|xE) > 1

2
4. X ∗ := X ∗ ∪ {x′}

VI. COMPLEXITY ISSUES

The computational complexity characterising inference on
credal nets has been deeply investigated in [9]. Regarding
updating, the considered problem is to decide whether or
not P (x′) > k (in the original proof XE := ∅; in fact the
proof with non-empty evidence follows analogously), which
means the existence of at least a P (X) ∈ K(X) such
that P (x′) > k, for given x′ ∈ X and (non-negative) k.
We call this task evaluation. We perform some (polynomial-
time) reductions of evaluation to its counterparts for interval
dominance, maximality and E-admissibility. If we can solve
any of these problems, then we can also solve evaluation,
which implies the hardness of decision making based on these
criteria with credal nets.

First, we rewrite the decision problems we are treating in
a convenient way. Again, we consider a credal net over X,
a state x′ of the queried variable X , and no evidence, i.e.,
XE := ∅. Regarding interval dominance as in (3), we say that
x′ is interval-dominance optimal if and only if

∀x′′ 6= x′ : ∃P1, P2 : P1(x′) > P2(x′′), (15)

that is, for each x′′, we can freely choose P1 to maximize the
probability of x′ and P2 to minimize the probability of x′′

such that we try to satisfy (15).
For maximality as in (4), we say that x′ is maximal if and

only if there is no x′′ ∈ X such that (10) is satisfied. This
means that, for every x′′ ∈ X , E(I{x′′} − I{x′}) ≤ 0, and
hence:

∀x′′ 6= x′ : ∃P : P (x′′) ≤ P (x′), (16)



that is, there is no x′′ that dominates x′. Differently from
interval dominance as in (15), here the same P has to be used
to compute P (x′′) and P (x′).

Finally, we say that x′ is E-admissible if and only if

∃P : ∀x′′ 6= x′ : P (x′) > P (x′′). (17)

Note now that the same P has to be used over all the
alternatives x′′ to x′, while distinct P (for each alternative
x′′) could be employed for the maximality criterion.

Now we will show that any of the three decision problems:
(i) is x′ interval-dominance optimal?, (ii) is x′ maximal?, and
(iii) is x′ E-admissible?, can be used to solve evaluation, i.e.,
decide whether or not P (x′) > k, which is the hard problem
from where the reduction is made. For this purpose, as in
the previous sections, we augment the net with an auxiliary
variable Y , which has the queried variable X as sole parent.
Unlike the previous cases, Y is assumed to be ternary, with
possibility space Y := {0, 1, 2}, and the model conditional
probability mass functions such that:

P (Y = 0|x) :=
I{x′} + 1

k + 3
, P (Y = 1|x) :=

k + 1

k + 3
, (18)

for each x ∈ X , while the probabilities for Y = 2 are
obtained by requiring the mass function to sum one. By simple
manipulations, we have, for each P (X) ∈ K(X):

P (Y = 0) =
∑
x∈X

P (Y = 0|x) · P (x) =
P (x′) + 1

k + 3
, (19)

P (Y = 1) =
∑
x∈X

P (Y = 1|x) · P (x) =
k + 1

k + 3
, (20)

P (Y = 2) =
∑
x∈X

P (Y = 2|x) · P (x) =

∑
x 6=x′ P (x)

k + 3
. (21)

An important fact is that, for each P (X) ∈ K(X), we have:

P (Y = 1) =
k + 1

k + 3
≥
∑

x 6=x′ P (x)

k + 3
= P (Y = 2). (22)

Let us consider the problem of deciding whether or not the
state Y = 0 is interval-dominance optimal. The only required
test by (15) is to check whether

∃P1, P2 : P1(Y = 0) > P2(Y = 1), (23)

because we already know that P (Y = 1) ≥ P (Y = 2) by
(22). This is equivalent to the evaluation problem as:

∃P1 :
P1(x′) + 1

k + 3
>
k + 1

k + 3
⇐⇒ ∃P1 : P1(x′) > k. (24)

Finally, let us note that when augmenting the credal net with
the auxiliary child Y , the topology and the treewidth of the
graph remain the same. In particular, if the original net was
a polytree (i.e., associated to a singly connected graph), the
net remains a polytree also after the transformation. Because
of the above inclusion, on the basis of the complexity results
in [9], we conclude that interval-dominance optimality is NP-
hard for polytrees and NPPP-hard for general credal nets.

Now let us discuss the maximality decision for Y = 0. In
this case, (16) reduces to decide whether or not exists P (X) ∈
K(X) such that P (Y = 1) ≤ P (Y = 0). Again this is the
only required test, because of (22), as if this is true, then we
also have that exists P (X) ∈ K(X) such that P (Y = 2) ≤
P (Y = 0). But testing whether or not P (Y = 0) ≥ P (Y = 1)
is equivalent to check:

P (x′) + 1

k + 3
≥ k + 1

k + 3
⇐⇒ P (x′) ≥ k, (25)

from which the analogous complexity result follows.8

Finally, the same argumentation holds for E-admissibility,
as (17) reduces to ∃P : P (Y = 0) > P (Y = 1) (using (22)),
which is again equal to deciding whether ∃P : P (x′) > k.

VII. CONCLUSIONS AND OUTLOOKS

Two simple graphical transformations allowing for the
identification of the set of optimal options according to the
maximality and E-admissibility criteria for the updated beliefs
about a variable in a credal network are presented. Inferences
based on these decision criteria (and similarly for interval
dominance) are proved to have the same complexity of the
evaluation of the bounds of the posterior probability, the latter
problem being NPPP-hard for general credal nets and NP-
hard for polytrees. These findings should be adopted when
performing classification or decisions making based on credal
nets. As a future work, we intend to extend these results to
situations where more than a single variable is queried.
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