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Abstract

This paper strengthens the NP-hardness result for the (partial) maximum a posteriori (MAP) prob-
lem in Bayesian networks with topology of trees (every variable has at most one parent) and variable
cardinality at most three. MAP is the problem of querying the most probable state configuration of some
(not necessarily all) of the network variables given evidence. It is demonstrated that the problem remains
hard even in such simplistic networks.

1 Introduction
A Bayesian network (BN) is a probabilistic graphical model that relies on a structured dependency among
random variables to represent a joint probability distribution in a compact and efficient manner [Pearl 1988].
One of the hardest inference problems in BNs is the maximum a posteriori (or MAP) problem, where one
looks for states of some variables that maximize their joint probability, given some other variables as evi-
dence (there may exist variables that are neither queried nor part of the evidence). The reader is assumed
to have read the previous work on which this text is based [de Campos 2011]. The same notation as there
will be used here.

Definition 1 A Bayesian network (BN)N is a triple (G,X ,P), where G = (VG ,EG) is a directed acyclic
graph with nodes VG associated (in a one-to-one mapping) to random variables X = {X1, . . . , Xn}
over discrete domains {ΩX1

, . . . ,ΩXn
} and P is a collection of probability values p(xi|πXi

) ∈ Q,1 with∑
xi∈ΩXi

p(xi|πXi
) = 1, where xi ∈ ΩXi

is a category or state ofXi and πXi
∈ ×X∈PAXi

ΩX a complete
instantiation for the parents PAXi of Xi in G. Furthermore, every variable is conditionally independent of
its non-descendant non-parents given its parents.

The joint probability distribution represented by a BN (G,X ,P) is obtained by p(x) =
∏

i p(xi|πXi
),

where x ∈ ΩX and all states xi, πXi
(for every i) agree with x. Now we introduce some notation. Sin-

gletons {Xi} and {xi} are respectively denoted as Xi and xi. Nodes of the graph and their associated
random variables are used interchangeably. Uppercase letters are used for random variables and lowercase
letters for their corresponding states. Bold letters are employed for vectors/sets. The input size of a BN,
called simply b here, is given by the length of the bit string to specify all the local conditional probability
distributions and the structure to describe the graph.

The MAP problem is to find an instantiation xopt ∈ ΩXmap , with Xmap ⊆ X \E, such that its probability
is maximized:

xopt = argmax
x∈ΩX

p(x|e) = argmax
x∈ΩX

p(x, e), (1)

because p(e) (assumed to be non-zero2) is a constant with respect to the maximization.

1Q denotes the non-negative rational numbers defined by fractions of integers.
2If p(e) is zero, then so is p(x, e), and the problem vanishes, as any x will be a maximizer for the problem.
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Figure 1: Tree used to prove Theorem 3.

Table 1: Probability values used in the proof of Theorem 3.

p(Yi|Yi−1) yTi−1 yFi−1 y∗i−1

yTi
1+ti

2 0 0
yFi

1−ti
2 0 0

y∗i 0 1 1

p(Ei|Xi) xTi xFi
eTi ti 1
eFi 1− ti 0

p(Xi|Yi) yTi yFi y∗i
xTi

ti
1+ti

1 1
2

xFi
1

1+ti
0 1

2

Definition 2 Given a BN N = (G,X ,P) such that the maximum cardinality of any variable is at most
z and the minimum treewidth is at most w, X ⊆ X \ E, a rational r and an instantiation e ∈ ΩE,
Decision-MAP-z-w is the problem of deciding if there is x ∈ ΩX such that p(x, e) > r.

2 Hardness of MAP-3-1
MAP has been proven to be hard even in trees with cardinality five [de Campos 2011]. The next theorem
strengthens that result.

Theorem 3 Decision-MAP-z-w is NP-hard even if z = 3, w = 1.

Proof We use a reduction from the partition problem [Garey and Johnson 1979], which is the problem
of deciding whether a list of positive integer numbers s1, . . . , sn can be partitioned in a way such that∑

i∈I si =
∑

i/∈I si, where I ⊆ N = {1, . . . , n} (the notation i /∈ I means that i ∈ N \ I). We say that
the partition problem is a yes-instance if there is such a I , otherwise we call it a no-instance. Instead of
working with the partition problem in that form, we define S :=

∑
i si/2 and vi := si/S, i = 1, . . . , n,

and work with the partition problem using vi instead of si (note that S is an integer, otherwise it would be
trivially a no-instance, and that the hardness of the problem remains the same, as there is a polynomial-time
computable bijection between solutions and decisions of the two variants).

We build a tree over variables X1, . . . , Xn, Y0, . . . , Yn, O,E1, . . . , En with graph as in Figure 1. The
root node is associated to the ternary variable Y0 taking values in {yT0 , yF0 , y∗0} such that p(yT0 ) = 1. For
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variable O, we have p(oT |yFn ) = p(oT |y∗n) = 1 and p(oT |yTn ) = 0. The remaining variables are defined in
Table 1.

Consider the computation of MAP where the variables of interest are X = {X1, . . . , Xn} (the gray
ones in Figure 1) and evidence (eT , oT ) = {∀i : Ei = eTi } ∪ {O = oT } (dark nodes in the figure). It
follows that

p(x, eT , oT ) =
∑
yn

p(oT |yn)p(yn,x, e
T ) = p(yFn ,x, e

T ) + p(y∗n,x, e
T ) =

= p(x, eT )− p(yTn ,x, eT ) = p(eT |x)
(
p(x)− p(yTn ,x)

)
.

By calculations with this specification of the network, one obtains p(x) = 2−n (no matter the actual states
of x), p(yTn ,x) = 2−np(eT |x) = 2−n

∏
i∈I ti, where I ⊆ N is the set of indices of the elements such that

Xi is at the state xTi . Denote t =
∏

i∈I ti. Then

p(x, eT , oT ) = 2−nt(1− t).

This is a concave quadratic function on 0 ≤ t ≤ 1 with maximum at 2−1 such that t(1− t) monoton-
ically increases when t approaches one half (from both sides). If we could set ti to be exactly 2−vi , then
1

2n t(1− t) = 1
2n 2−

∑
i∈I vi(1− 2−

∑
i∈I vi), which achieves the maximum of 1

2n 2−1(1− 2−1) if and only
if
∑

i∈I vi = 1, that is, if and only if there is an even partition.
It remains to show that we can specify values ti using only polynomially many bits in b such that they

are very close to 2−vi , and hence yes-instances of partition are separated from no-instances. For that, one
just needs to follow the results in [Maua et al. 2013, de Campos et al. 2013] regarding errors introduced by
using rationals in place of real numbers, or the very same approach as in Theorem 3 of [de Campos 2011],
which we copy here for completeness.

Compute each ti to be equal to 2−vi with 4b+ 3 bits of precision and by rounding it up (if necessary),
that is, ti = 2−vi + errori, where 0 ≤ errori < 2−(4b+3). Clearly ti can be computed in polynomial time
and space in b (this ensures that the specification of the Bayesian network, which requires rational numbers,
is polynomial in b). Note that 2−vi ≤ ti ≤ 2−vi + errori < 2−vi + 2−(4b+3) ≤ 2−vi+2−4b

(in short, this
holds because 2−4b in the exponent makes the value grow faster than the linear addition of 2−(4b+3)).

If I is not an even partition, then we know that one of the two conditions hold: (i)
∑

i∈I si ≤ S − 1⇒∑
i∈I vi ≤ 1 − 1

S , or (ii)
∑

i∈I si ≥ S + 1 ⇒
∑

i∈I vi ≥ 1 + 1
S , because the original numbers si are

integers. Consider these two cases.
If
∑

i∈I si ≥ S + 1, then t <
∏

i∈I 2−vi+2−4b

equals to

2
∑

i∈I(−vi+2−4b) ≤ 2
n

24b
−(1+ 1

S ) ≤ 2−1−( 1

2b
− 1

23b
) = l,

by using S ≤ 2b and n ≤ b < 2b. On the other hand, if
∑

i∈I si ≤ S − 1, then t ≥
∏

i∈I 2−vi equals to

2−
∑

i∈I vi ≥ 2−(1− 1
S ) = 2−1+ 1

S ≥ 2−1+ 1

2b = u.

Now suppose I ′ is an even partition. Then we know that the corresponding t′ satisfies 2−1 ≤ t′ and

t′ <
∏
i∈I′

2−vi+2−4b

= 2
∑

i∈I′ (−vi+2−4b) ≤ 2−1+ 1

23b = a.

To complete the proof, we show that the distance between t′ and 2−1 is always less than the distance
between t and 2−1 of a non-even partition plus a gap, that is,

|t′ − 2−1|+ 2−(3b+2) ≤ a− 2−1 + 2−(3b+2)

< min{u− 2−1, 2−1 − l} ≤ |t− 2−1|, (2)
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which can be proved by analyzing the two elements of the min. The first term holds because

a+2−(3b+2) − 2−1 < a · 2
1

22b − 2−1

= 2−1+ 2−b+2−2b

2b − 2−1 < 2−1+ 1

2b − 2−1 = u− 2−1.

The second comes from the fact that the function h(b) = a+ l + 2−(3b+2) = 2−1+ 1

23b + 2−1−( 1

2b
− 1

23b
) +

2−(3b+2) is less than 1 for b = 1, 2 (by inspection), it is a monotonic increasing function for b ≥ 2 (the
derivative is always positive), and it has limb→∞ h(b) = 1. Hence, we conclude that h(b) < 1, which
implies

a+ l + 2−(3b+2) < 1 ⇐⇒ a− 2−1 + 2−(3b+2) < 2−1 − l.
This concludes that there is a gap of at least 2−(3b+2) between the worst value of t′ (relative to an even
partition) and the best value of t (relative to a non-even partition), which will be used next to specify the
threshold of the MAP problem:

max
x

p(x, eT , oT ) > r = c · 1

2n
, (3)

where c is defined as a′ · (1 − a′), with a′ equals a evaluated up to 3b + 2 bits and rounded up, which
implies that 2−1 < a ≤ a′ < a + 2−(3b+2). By Eq. (2), a′ is closer to one half than any t of a non-even
partition, so the value c is certainly greater than any value that would be obtained by a non-even partition.
On the other hand, a′ is farther from 2−1 than a, so we can conclude that c separates even and non-even
partitions, that is, t · (1− t) < c ≤ a · (1−a) < t′ · (1− t′) for any t corresponding to a non-even partition
and any t′ of an even partition. Thus, a solution of the MAP problem obtains p(x, eT , oT ) > r if and only
there is an even partition.3 �

3 Conclusion
This short paper strengthens the hardness results for the MAP problem in Bayesian networks, proving that
it is NP-hard even for simple trees with binary and ternary variables. It remains open whether MAP is
NP-hard in binary trees.
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