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Abstract—Hidden Markov models (HMMs) are widely used
models for sequential data. As with other probabilistic graphical
models, they require the specification of precise probability
values, which can be too restrictive for some domains, espe-
cially when data are scarce or costly to acquire. We present
a generalized version of HMMs, whose quantification can be
done by sets of, instead of single, probability distributions. Our
models have the ability to suspend judgment when there is
not enough statistical evidence, and can serve as a sensitiv-
ity analysis tool for standard non-stationary HMMs. Efficient
inference algorithms are developed to address standard HMM
usage such as the computation of likelihoods and most probable
explanations. Experiments with real data show that the use of
imprecise probabilities leads to more reliable inferences without
compromising efficiency.

I. INTRODUCTION

Sequential data naturally arises in a wide range of domains
such as speech [1] and text processing [2], activity recognition
[3] and computational biology [4]. Hidden Markov models
(HMMs) are widely used generative probabilistic models of
sequential data that assume observations to be produced from
a chain of hidden (i.e., unobserved) states [1]. An HMM
comprises a prior probability distribution, which specifies the
probability that the process originates in a given state, a tran-
sition probability distribution, which specifies the probability
that the process will transit from a given state to another,
and an emission probability distribution, which specifies the
probability of observing a symbol conditional on a state.

In many real world applications, the transitions between
consecutive hidden states and the relation between a hidden
variable and the corresponding observation are affected by
severe uncertainty. This is the case, for instance, when data
are scarce [5], observations are missing not-at-random [6], and
information is conflicting. In such cases, the use of probability
distributions to represent uncertainty might be inadequate and
lead to overly confident inferences [7].

Credal sets [8] are closed and convex sets of probability
distributions that allow for a more general representation
of uncertainty, including the situations just described. For
instance, complete ignorance about a variable is represented as
the credal set of all probability distributions in that variable,
instead of the more common representation as a uniform
probability distribution. The imprecise Dirichlet model (IDM,
[9]) learns credal sets from categorical data in a situation of
near prior ignorance, providing a more reliable (although less

informative) model of the underlying distribution than the more
common Multinomial-Dirichlet model.

This paper develops the imprecise hidden Markov model
(iHMM), which allows the specification of a time- and state-
discrete HMM with prior, transition and emission credal sets in
lieu of probability distributions. iHMMs provide a sound way
to handle severe uncertainty, with two direct benefits. First,
they allow us to suspend judgment when there is not sufficient
evidence in the training set to make a reliable decision [10].
Second, they provide an efficient tool for performing sensitiv-
ity analysis [11] in standard non-stationary HMMs, allowing
parameters to vary jointly, and in time. To our knowledge, we
present the first polynomial-time algorithm to perform such an
analysis.

In the rest of the paper, we review the related work
(Sec. II), present the iHMM, and describe algorithms to deal
with common uses such as comparing models according to
the data likelihood (Sec. IV), and finding the most likely
hidden state sequence for a given sequence of observations
(Sec. V). Experiments with a part-of-speech tagging and a
activity recognition tasks (Sec. VI) provide evidence that
iHMMs are indeed capable of making reliable decisions, and
evaluating the sensitivity of HMMs to the learning sample size.
Conclusions and future work are described in Sec. VII.

II. RELATED WORK

Bayesian networks [12] are probabilistic graphical models
where conditional independences are represented by a graph
whose nodes are identified with random variables. HMMs
are part of a special class of tractable Bayesian networks,
one for which efficient inference algorithms are available.
As with HMMs, Bayesian networks require uncertainty to
be represented by conditional probability distributions. Credal
networks [13] extend Bayesian networks to allow uncertainty
to be modeled as credal sets. The iHMMs we develop here are
special cases of tree-shaped credal networks.

Drawing inferences with credal networks is a notoriously
hard problem. Exact marginal inference is NP-hard even for
polytree-shaped networks [14]. A few exceptions to that appear
in the literature. [15] developed an efficient algorithm for the
special case of updating polytree-shaped credal networks with
binary variables. [16] described a method to compute joint
queries in tree-shaped networks when there is no evidence.

The algorithmic techniques discussed in the paragraph
above deal with the interpretation of imprecision in the pa-



rameters known as strong independence. Strong independence,
which we adopt in this work, assumes the existence of an
ideal probability distribution which we cannot characterize for
lack of resources. Epistemic irrelevance (or its symmetrical
counterpart epistemic independence) on the other hand makes
no such claim, and allows for the possibility that there might
not be any single probability distribution capable of represent-
ing a certain piece of (uncertain) knowledge. [17] presented
an efficient algorithm for single-query marginal inferences in
tree-shaped credal networks under epistemic irrelevance. As an
HMM is a tree-shaped credal network, filtering (i.e., estimating
the marginal probability of the future state given a sequence
of observations) can be performed in polynomial-time if epis-
temic irrelevance by their algorithm. Recently, [18] showed
that filtering on iHMM provides the same results whether one
adopts strong independence or epistemic irrelevance. Hence,
filtering is also polynomial-time computable in iHMMs under
strong independence.

For other marginal inference tasks, efficiency can be
achieved at the expense of accuracy. [19] developed an ap-
proximate method based on linear programming relaxations
that was shown to outperform other approximate methods for
marginal inference.

The use of credal sets in modeling sequential data is not
new. [20] investigated Markov chains with interval-valued tran-
sition probabilities. [21] used credal sets for sensitivity analysis
in Markov chains. [22] and [23] defined imprecise Markov
chains, and analyzed some basic asymptotic behaviors such as
regularity and ergodicity. [24] studied imprecise Markov chains
with absorbing states. [25] investigated the use of iHMMs
under epistemic irrelevance for tracking tasks. [7] defined an
iHMM over continuous variables aimed at performing robust
filtering. An imprecise version of the Baum-Welch procedure
[1], used to estimate the parameters of an HMM when the
state sequence is not observable, was developed by [26], and
tested on a activity recognition task. [27] extended the learning
of iHMMs from data to the case of epistemic irrelevance.
[28] designed an algorithm that computes the maximal joint
state sequences of an iHMM. A state sequence is maximal
if there is no other state sequence with greater probability
under any distribution induced by the model. Finding maximal
state sequences is an alternative to the explanation methods we
develop in Section V. [29] designed a method for comparing
two iHMMs according to their asymptotic data likelihood, and
also applied it on activity recognition.

III. IMPRECISE HIDDEN MARKOV MODELS

Let Qt denote a family of discrete variables parametrized
by t and taking values in a finite set of states Q =
{z1, . . . , zN}. The parameter t is called time (step). For
convenience, we identify each state zi with its subscript i.
Similarly, let Ot denote a family of discrete variables taking
values in a set of possible outcomes O = {y1, . . . , yM}.
Definition 1. A hidden Markov model (HMM) is a tuple
λ = (a1

2, . . . , a
N
T , b

1
1, . . . , b

N
T , π), where ait,i = 1, . . . , N ,t =

2, . . . , T , and bit, i = 1, . . . , N ,t = 1, . . . , T , are transition
and emission probability distributions, respectively, and π is
the prior probability distribution. The model is said to be
stationary if for any i, t and t′ we have that ait = ait′ and
bit = bit′ .

An HMM defines a joint probability distribution

p(q1:T , o1:T |λ) = π(q1)bq11 (o1)

T∏
t=1

a
qt−1

t (qt)b
qt
t (ot) (1)

over the set of hidden variables Q1, . . . , QT and mani-
fest variables O1, . . . , OT such that the sequence Q1:T :=
(Q1, . . . , QT ) is a Markov chain (i.e., Qt+1 is conditionally
independent of Q1, . . . , Qt−1 given Qt, for each t), and the
probability of the variables in O1:T := (O1, . . . , OT ) are only
affected by the corresponding hidden variables (i.e., Ot is
conditionally independent of all other variables given Qt).

For any set of random variables X1:r = {X1, . . . , Xr},
KX1:r

denotes a credal set over X1:r, that is, a closed convex
set of probability distributions p(X1:r). A conditional credal
set Kw

X of conditional probability distributions p(X|W = w)
is obtained by element-wise application of Bayes’ rule over
KX,W for W = w. The lower and upper probability for
an event X = x are defined, respectively, by p(x|KX) :=
minp∈KX

p(x) and p(x|KX) := maxp∈KX
p(x).

Definition 2. An imprecise hidden Markov model (iHMM)
is a tuple Λ = (A1

2, . . . , A
N
T , B

1
1 , . . . , B

N
T ,Π), where Ait :=

Ki
Qt

, i = 2, . . . , N ,t = 1, . . . , T , and Bit := Ki
Ot

, i =
1, . . . , N ,t = 1, . . . , T , are credal sets of transition and
emission distributions, respectively, and Π is the credal set
of prior distributions. An iHMM is said to be homogenous if
for all i: (i) transition credal sets Ai2, . . . , A

i
T are equal, and

(ii) emission credal sets Bi1, . . . , B
i
T are equal.

The above notation emphasizes the analogies with standard
HMMs. In fact, an iHMM can be seen as a set of precise
HMMs, one for each combination of probability distributions
a1

2 ∈ A1
2, . . . , a

N
T ∈ ANT , b11 ∈ B1

1 , . . . , b
N
T ∈ BNT , π ∈ Π. Yet

another view of an iHMM is as the set of joint probability
distributions that factorizes as in (1).

Example. Consider the following matrices containing lower
and upper probabilities.

A =

(
0.3 0.4
0.5 0.4

)
A =

(
0.6 0.7
0.6 0.5

)
B =

(
0.1 0.3
0.2 0.3

)
B =

(
0.7 0.9
0.7 0.8

)
Π = (0.3 0.6) Π = (0.4 0.7)

Let Π be the set of prior probability distributions π such
that π(j) ∈

[
Πj ,Πj

]
, Ai2 be the set of transition probability

distributions ai2 such that ai2(j) ∈
[
Aij , Aij

]
, and Bit be

the set of emission probability distributions bit such that
bit(j) ∈

[
Bij , Bij

]
, i = 1, 2, j = 1, 2, and t = 1, 2. The tuple

(A1
2, A

2
2, B

1
1 , B

2
1 , B

1
2B

2
2 ,Π) specifies an homogenous iHMM.

Given an iHMM Λ = (A1
2, . . . , A

N
T , B

1
1 , . . . , B

N
T ,Π), we

write At := ×Ni=1A
i
t to denote the Cartesian product of

transition credal sets at time t (analogously for Bt), At0:tf
:=

×tft=t0At to denote the Cartesian product of credal sets from
time t0 to time tf (analogously for Bt0:tf

), and Ai1 := Π for
any i.



IV. LIKELIHOOD

HMMs are commonly used to classify sequential data by
choosing the model that best fits a sequence of observations
according to the likelihood. Formally, we can define the
task as follows. Given a finite set Λ of (precise) HMMs,
and a sequence of observations o1:T ∈ ×Tt=1O, determine
λ∗ = argmaxλ∈Λ p(o1:T |λ). In order to generalize to the
credal setting, we use the following notion of dominance.

Definition 3. Given two iHMMs Λ1 and Λ2 and an obser-
vation sequence o1:T , we say that Λ1 dominates Λ2 for o1:T ,
denoted Λ1 � Λ2, if and only if

p(o1:T |Λ1)− p(o1:T |Λ2) > 0 . (2)

Dominance suggests that iHMMs can be used as credal
classifiers [16] for reliable/robust sequence classification in
the same way as HMMs are used for classifying sequential
data. A class label associated to model Λ1 is preferred as a
classification of o1:T over a class label associated to model
Λ2 if and only if Λ1 � Λ2. Given a finite set Λ1, . . . ,ΛK of
iHMMs, credal classification outputs the set of undominated
models

Λ∗ = {Λk|@j 6= k such that Λj � Λk} . (3)

The elements of Λ∗ are determined by computing the upper
and lower likelihood for each model Λk, k = 1, . . . ,K. In
the rest of this section, we present an algorithm to compute
such probabilities that is inspired on the algorithm of [16] for
computing joint queries with no evidence in credal trees. For
the sake of brevity, we present only the derivation for the lower
bound. The case for upper likelihoods is analogous.

Let the lower backward variable be given by

βt(i) = p(ot:T |Qt−1 = i,Λ) . (4)

The credal sets Ki
Ot:T

, i = 1, . . . , N , are said to be compatible
if it is possible to simultaneously consider probability distribu-
tions that attain lower probabilities p(ot:T |Qt−1 = i,Λ) for all
i. The variables βt(i) can be computed recursively, according
to the following inductive procedure.

1. Basis: For t = T + 1,

βT+1(i) = 1, for all i (5)

Clearly, {βT+1(i)}Ni=1 are compatible.

2. Induction: From t = T to t = 2,

βt(i) = min
ait∈A

i
t

bt∈Bt

N∑
j=1

ait(j)b
j
t (ot)βt+1(j) (6)

= min
ait∈A

i
t

bt∈Bt

N∑
j=1

ait(j)b
j
t (ot)p(ot+1:T |j,Λ) (7)

= p(ot:T |Qt−1 = i,Λ) , (8)

where we have assumed by inductive hypothesis in (6)–(7)
that (4) holds at time t + 1 for all j. In the passage (7)–(8),
the lower bound can be obtained by assuming compatibility at

time t + 1 and noting the separate specification of transition
and emission credal sets, followed by simple marginalization
over Qt.

3. Termination: For t = 1,

β1(i) = min
π∈Π
bt∈Bt

N∑
j=1

π(j)bj1(ot)β2(j) (9)

= p(o1:T |Λ) . (10)

Let U denote the worst case time spent to compute one
iteration of the recursion in (6). The algorithm solves O(NT )
recursions of βt(i), taking a total time of O(TNU). The
time to solve each recursion depends on how credal sets are
specified.

Consider the case where credal sets are specified by prob-
ability intervals. A (conditional) credal set Kz

X is said to be
specified by interval-valued probabilities if it can be described
by a set of inequalities in the form

0 ≤ `(x) ≤ p(x|z) ≤ u(x) ≤ 1,∀x ∈ X (11)∑
x

p(x|z) = 1 . (12)

Let us define the auxiliary variable vjt =
minbjt∈B

j
t
bjt (ot)βt+1(j). Since credal sets are separately

specified, variables vjt for j = 1, . . . , N can be optimized
independently, and recursion (6) can be solved by
minait∈Ai

t

∑N
j=1 a

i
t(j)v

j
t . Because each Ait is defined

through intervals and the values vjt are known, this problem
reduces to a continuous knapsack problem, which can be
solved in U = O(N) time [16].

If the credal sets are specified by finite sets of distributions,
the optimization in (6) can be solved by enumeration of all
possible solutions [15], which can be done in O(E) time,
where E is the maximum cardinality of a set in Λ.

V. MOST PROBABLE EXPLANATION

An important use of (precise) HMMs is to infer the
most probable configuration of the hidden states for a given
sequence of observations, that is,

q∗1:T = argmax
q1:T

p(q1:T , o1:T )∑
i1:T

p(i1:T , o1:T )
. (13)

The Viterbi algorithm [30] can be used to efficiently solve (13)
for the optimal sequence based on the fact that the denominator
on the right-hand side is constant with respect to the choice
of q1:T and can thus be excluded from the computation.
This approach can be generalized to iHMMs by adopting the
following criteria.

Definition 4. Given an iHMM Λ, the joint maximin and
joint maximax explanations for a sequence o1:T are given by,
respectively,

argmax
q1:T

p(q1:T , o1:T |Λ) , (14)

argmax
q1:T

p(q1:T , o1:T |Λ) . (15)



The maximin and maximax explanations describe extreme
scenarios where the distributions are chosen, respectively, in
a pessimistic and optimistic way. We can use this fact to
analyze the sensitivity of precise HMMs to fluctuations of
the parameters over time and within the bounds defined by
the local credal sets. In this sense, explanations provided by
HMMs comprised in an iHMM can be regarded as reliable if
both maximin and maximax explanations coincide.

Note that, unlike the case for precise HMMs, the expla-
nations obtained using (14) and (15) may differ from the
explanations provided by extreme scenarios of the posterior
probabilities, since in the equations

argmax
q1:T

min
p∈KQ1:T ,O1:T

p(q1:T , o1:T )∑
i1:T

p(i1:T , o1:T )
, (16)

argmax
q1:T

max
p∈KQ1:T ,O1:T

p(q1:T , o1:T )∑
i1:T

p(i1:T , o1:T )
, (17)

the denominators vary with the choice of state sequence and
hence cannot be excluded. Empirical results with artificial data
(omitted from this paper due to lack of space) show that, at
least for small chains, the explanations obtained using joint
probability do not differ significantly from those obtained by
the posterior probabilities. Additionally, the joint seems to
provide explanations at least as reliable as the posterior.

In what follows, we present an algorithm for computing
joint maximin explanations based in (14). A similar algorithm
based in (15) can be obtained by analogy.

Let δt(i) and φt(i) be defined, respectively, as

δt(i) = max
qt:T

p(qt:T , ot:T |Qt−1 = i,Λ) , (18)

φt(i) = argmax
qt:T

p(qt:T , ot:T |Qt−1 = i) . (19)

We can solve variables δt(i) and φt(i) recursively by a
Viterbi-like algorithm as follows.

1. Basis: For t = T + 1,

δT+1(i) = 1, for all i , (20)
φT+1(i) arbitrary for all i . (21)

2. Induction: From t = T to t = 2,

δt(i) = max
j

min
ait∈A

i
t

bt∈Bt

ait(j)b
j
t (ot)δt+1(j) (22)

= max
j

[
p(Qt = j, ot|Qt−1 = i, λ)

× max
qt+1:T

p(qt+1:T , ot+1:T |j, λ)

]
(23)

= max
qt:T

p(qt:T , ot:T |Qt−1 = i,Λ) . (24)

The passage from (22)–(23) was obtained by assuming the
inductive hypothesis of (18) true at time step t+1 and solving
the minimization locally due to the separate specification.
Equation (24) was reached by moving the inner maximiza-
tion out, as it is independent with respect to the choice of
p(Qt = j, ot|Qt−1 = i,Λ), and then applying probability laws.
φt(i) is chosen as the argument of (22).

3. Termination: For t = 1,

δ1(i) = max
j

min
π∈Π
bt∈Bt

π(j)bjq(oq)δ2(j) (25)

= max
q1:T

p(q1:T , o1:T |Qt−1 = i,Λ). (26)

The most probable explanation can be obtained by backtrack-
ing the partial decisions stored in φt(i),

q∗t = φt(q
∗
t−1), for t = 2, . . . , T ,

where q∗1 is the solution of (25).

The algorithm runs in O(TN2) time, since the minimiza-
tions can be solved by choosing lower probabilities, which are
already available for interval-base probability sets or can be
computed in advance for credal sets specified by probability
distributions.

VI. EXPERIMENTS

In this section, we describe the results of experiments
with real data that provide evidence of the efficiency and
applicability of the algorithms described here.1

A. Human Action Recognition

As a purely demonstrative application of the likelihood
algorithm described in Sec. IV, we consider an action recog-
nition task. Given a video sequence, the goal is to determine
which action, among a given number of possible alternatives,
is showed there. The frames of the sequence can be easily
regarded as the observations of a generative sequence, and
HMMs are therefore a natural choice for the modeling. The
Weizmann human action data set [3] is composed by a number
of sequences, each one tagged by its action. Nine different
actions (see second column of Table I) are considered.

We adopt a simple approach to action recognition based
on the likelihood algorithm for iHMMs. Nine “representative”
video sequences, one for each action, are selected from the
benchmark. Then, for each selected sequence, an iHMM is
obtained using local IDMs [9] with fractional counts estimated
from data using the standard Baum-Welch algorithm [1] in the
place of data counts. We denote these iHMMs by Λ1, . . . ,Λ9.
The use of iHMMs here are justified by the fact that, likewise
single probability distributions estimated from data, fractional
count estimates from the Baum-Welch algorithm are prone
to inaccuracies introduced by the scarceness of data and
other factors [26].2 For each frame, the first five features,
obtained among 50 selected features processed with principal
components analysis, are treated as a single manifest variable.
No data are available about the hidden variable, whose number
of states (also called canonical poses) is an input for the Baum-
Welch algorithm (we set N = 5).

As an illustrative example, we consider a random sequence
not used as a representative to be classified based on the
models in Λ∗. According to the dominance criterion (Def. 3),

1The inference algorithms are available upon request to the first author.
2Note that we assume MAR as a valid hypothesis since all states are missing

in a presumably non selective way. In fact, iHMMs can also deal with other
learning approaches that do not make assumptions about the missingness
process [6].



TABLE I. COMPARISON BETWEEN THE DECISIONS MADE BY IHMMS
USING LOWER AND UPPER LIKELIHOOD AND HMM USING LIKELIHOOD
FOR A SINGLE TEST SEQUENCE THAT SHOWS A “WALK” ACTION. BOLD

FACE IS USED TO OUTLINE THE ACTIONS NOT REJECTED BY THE IHMMS
AND THAT MAXIMIZING THE LIKELIHOOD FOR THE HMM.

j action p(o1:T |λj) p(o1:T |λj) p(o1:T |λj)

1 bend 0.8152 0.8607 0.8605
2 jack 0.8721 0.9207 0.9206
3 jump 0.8425 0.8895 0.8893
4 pjump 0.8670 0.9153 0.9151
5 side 0.8139 0.8594 0.8591
6 run 0.9083 0.9588 0.9587
7 walk 0.8622 0.9103 0.9101
8 wave1 0.8561 0.9039 0.9037
9 wave2 0.8390 0.8858 0.8856

the result of the classification is a set of non rejected actions,
that is, a set of possible explanations comprising the true one.
Table I shows the results of a comparison with precise HMMs
(with parameters learned with Baum-Welch) for a single video
sequence in the test set. Notably, the precise approach returns
a wrong answer, while the imprecise approach returns a set of
four actions, including both the correct one and the wrong one
returned by the HMM.

B. Part-of-Speech Tagging

We evaluated the ability of iHMMs to discriminate between
reliable and non reliable explanations by comparing joint
maximin and maximax explanations in a part-of-speech (PoS)
tagging task [2].

We performed experiments with reduced versions of two
common data sets used for PoS that are freely available on
the nltk package distribution.3 The reduced versions of the
Brown and Penn data sets contain, respectively, 38 and 31
distinct syntactic tags and ∼ 5500 and ∼ 3500 distinct words,
and allowed us to exploit the performance of HMMs with
small training samples, where the impact of single probability
distributions learned from data is greater. The interval-based
credal sets were learned using local IDMs (with hyperparame-
ter s = 1). Tags not occurring in the training data were omitted
from the model (instead of having vacuous credal sets). Words
appearing less than 4 times in the training data were collapsed
into a single term and used for estimating the probability
(or probability interval) of unseen words during classification.
Coherently, the precise HMMs were learned with maximum
likelihood smoothed by Perks’ priors (with s = 1), and same
preprocessing steps. In order to assess the difficulty of the task
we also performed tests with a simple unigram tagger. Fig. 1
reports the results of numerical simulations for 5-fold cross
validation and increasing size of the training set for the two
data sets.

We evaluated the ability of discriminating reliable and non-
reliable explanations by comparing the average accuracy of
the predictions (PoS tags) of the precise HMM in the full test
set and in two partitions of test set. The first, denominated
match set consisted only of tokens for which the maximin
and maximax criteria provided the same explanation. The
second, denominated mismatch set, consisted of instances
where maximin and maximax disagreed. According to our

3http://www.nltk.org

rationale, the accuracy of the precise should be much greater on
the match set than on the mismatch set, as the former consisted
of reliable predictions of the precise HMM. The results show
that the predictions in the match set are considerably superior
to the predictions in the mismatch set in both data set. The rate
of agreement, represented in the graph as the distance between
the full set and the match set accuracies, was low in both data
sets, indicating the unreliability of explanations generated by
precise HMMs learned from very few data.

VII. CONCLUSION

We introduce imprecise hidden Markov models as an
extension of standard HMMs that allows proper handling of
the imprecision in the parameters that arise in many domains.
We presented algorithms for computing likelihood and most
probable explanation queries in iHMMs that are comparable in
terms of complexity to the corresponding algorithms available
for HMMs.

Experiments with real data showed that iHMMs do work
as “cautious” classifiers that make decisions only when there
is enough statistical evidence to support them. In addition,
iHMMs can serve as valuable tools to perform analysis of
the sensitivity of precise HMMs to variations of the param-
eters. More complete experiments with the classification of
sequences are necessary.

The imprecision in the numerical parameters of the model
translates to indeterminacy when using the models to make
decisions as in the applications we show. We have adopted here
interval dominance to compare models based on likelihood
and maximin and maximax to evaluate explanations. The
literature counts with other criteria that are worth evaluating.
Implementing such criteria will require developing efficient
algorithms. We leave that as future work.

There is also interest in investigating in the future the
use of iHMMs in tasks such as filtering, for which efficient
algorithms exist, and to extend the model to cases for which
fast algorithms could still be achieved.
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by utility-discounted predictive accuracy,” International Journal of
Approximate Reasoning, vol. 53, no. 8, pp. 1282–1301, 2012.

[11] H. Chuan and A. Darwiche, “Sensitivity analysis in Bayesian networks:
From single to multiple parameters,” in Proceedings of the Twentieth
Conference on Uncertainty in Artificial Intelligence (UAI), 2004, pp.
67–75.

[12] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, 1988.

[13] F. Cozman, “Credal networks,” Artificial Intelligence, vol. 120, pp. 199–
233, 2000.

[14] C. P. de Campos and F. Cozman, “The inferential complexity of
Bayesian and credal networks,” in Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 2005, pp. 1313–1318.

[15] E. Fagiuoli and M. Zaffalon, “2U: An exact interval propagation
algorithm for polytrees with binary variables,” Artificial Intelligence,
vol. 106, no. 1, pp. 77–107, 1998.

[16] M. Zaffalon and E. Fagiuoli, “Tree-based credal networks for classifi-
cation,” Reliable Computing, vol. 9, no. 6, pp. 487–509, 2003.

[17] G. de Cooman, F. Hermans, A. Antonucci, and M. Zaffalon, “Epis-
temic irrelevance in credal nets: the case of imprecise Markov trees,”
International Journal of Approximate Reasoning, vol. 51, no. 9, pp.
1029–1052, 2010.
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