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A parametric regression model for right-censored data with a log-linear me-
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1. Introduction

Regression models for reliability and survival censored data are widely
used in many areas, for instance in engineering, medicine and biology. When
choosing which model to apply to their data, users face (at least) two im-
portant questions: (i) are the theoretical properties of the model suitable
for my domain? (ii) is it easy to produce and to interpret results with this
model? The first question is essential, otherwise results are of no mean-
ing. The second question relates in part to the availability and ease-of-use
of software packages implementing the desired model. In this paper we pro-
pose a parametric regression model with log-linear median and tackle both
aforementioned questions. The wide suitability of the model is addressed by
its flexibility, allowing users to select one among many distributions for the
error, in order to fit survival data with different shapes. The ease-of-use is
tackled by devising the functions that characterize the model and methods
to perform estimation of parameters, all implemented in a freely available
open-source package.

There are many studies that deal with the quantile regression model un-
der non-parametric and semi-parametric approaches for right-censored data
(see, for example, BuHamra et al. (2004); Fung et al. (2012); Koenker (2008);
Lin et al. (2012a,b)). The present work is a parametric extension of the
Transform Both Sides (TBS) model of Lin et al. (2012b), a semi-parametric
log-linear median regression model. Semi-parametric models such as Cox’s
(1972) proportional hazards model and linear transformation models (Cheng
et al., 1995) are very popular for modeling effects of covariates on a survival
response. Several authors, including Ying et al. (1995), gave compelling
arguments in favor of focusing on the quantiles of the survival time for mod-
eling and reporting data analysis results. The many semi-parametric and
non-parametric approaches are mostly based on self-consistency and mar-
tingales, which estimate equations for the median regression (Cheng et al.,
1997; Portnoy, 2003; Peng and Huang, 2008). Carroll and Ruppert (1984),
and Fitzmaurice et al. (2007) propose parametric versions of a Box-Cox
transform-both-sides regression model, considering only uncensored contin-
uous responses, the original Box-Cox transformation, and the normal distri-
bution for the error.

By using a parameter that handles the possible asymmetry in the distri-
bution of the data, we allow the error distribution to be any zero-centered
unimodal symmetric distribution. In this paper we especially consider five
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important distributions: normal, double-exponential, Student’s t, Cauchy
and logistic, even if the model and our implementation allow the user to
supply their own error distribution to be used. The choice of the error distri-
bution strongly depends on the estimation problem being faced, and so TBS’s
flexibility stretches the use of the model to a wide range of problems. In other
words, TBS provides a class of parametric models, according to the choice
of the error distribution. We present the density function, the survival (dis-
tribution) function and the hazard function of the survival/failure time for
each error distribution. We develop both maximum likelihood and Bayesian
estimators, and their associated implementations. Because each model in our
class has a parametric density function, algorithms for the maximum likeli-
hood estimator and the Markov Chain Monte Carlo method for the Bayesian
estimator are simple to implement, and take a reasonably short time to run.
The computational tool is provided as an R package called TBSSurvival,
which runs inferences with the proposed parametric regression model class.
The aim of this package is to provide clean and fast procedures such that
one can easily adapt their estimation methods to make use of the TBS model
with minimum effort (ideally by just replacing a couple of function calls).

This paper is organized as follows. Section 2 proposes the parametric
TBS model and discusses on its properties. The estimation procedures are
presented in Section 3, along with an overview of the package’s implemen-
tation. Section 4 contains the data examples and simulation studies, and
finally the conclusions and future directions are presented in Section 5.

2. Transform-Both-Sides model

Let Ti be the survival time of subject i = 1, . . . , n and let Xi be the
vector (1, X1,i, . . . , Xk,i)

′ of k time-constant corresponding covariates along
with the intercept term. The Transform-Both-Sides (TBS) model (Lin et al.,
2012b) assumes that

gλ(log(Ti)) = gλ(βXi) + εi, (1)

where β = (β0, . . . , βk) is a regression parameter, εi is an unspecified error
with a common symmetric unimodal density fε free of covariates Xi, and

gλ(u) =
sign(u)|u|λ

λ
, (2)

with λ > 0, sign(u) = 1 if u ≥ 0 and sign(u) = −1 if u < 0.
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Table 1: Distributions of error that are explicitly covered in this work.

Distribution Parameter Density function (fε(ε|ξ))
Normal ξ = σ2 (2πσ2)−1/2 exp {−ε2/(2σ2)}

DoubExp ξ = b (2b)−1 exp {−|ε|/b}

Student’s t ξ = η (d.f.) Γ((η+1)/2)
Γ(η/2)

√
πη

(
1 + ε2

η

)−(η+1)/2

Cauchy ξ = c [πc (1 + (ε/c)2)]
−1

Logistic ξ = s exp{ε/s}
s[(1+exp{ε/s})2]

The parametric space for all parameters is (0,+∞).

The TBS model is an extension of the Box-Cox power family (Box and
Cox, 1964), a popular transformation to obtain a symmetric and unimodal
density for the (transformed) random variable. We assume that the density
fε of errors εi in Equation (1) is centered at zero. Lin et al. (2012b) assume
a non-parametric distribution for fε, and a semi-parametric model for the
survival time. We instead propose a parametric distribution for fε to obtain
a parametric regression model. Table 1 presents the error distributions that
are explicitly considered in this work. For each distribution, ξ denotes its free
parameter. Although we focus on these five distributions, we note that any
unimodal symmetrical distribution centered at zero can be similarly used,
and we explain how to do so later on.

The important characteristics of the model are obtained by the density,
survival and hazard functions. Equation (1) can be rewritten as

εi = gλ(log(Ti))− gλ(βXi), or equivalently as

Ti = exp
{
g−1
λ [gλ(βXi) + εi]

}
, (3)

where the inverse function g−1
λ is such that g−1

λ (u) = sign(u)|λu| 1λ . Note
that this formulation precludes negative values of Ti, which could occur in
a Box-Cox transformation if estimates of (β, λ, ξ) have some (finite sample)
bias (Fitzenberger et al., 2010). Considering fixed values for the parameters
(β, λ, ξ), the distribution of Ti is a transformation of the error distribution.
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By using Equation (3), we obtain density and survival functions of Ti as

fT (ti) = t−1
i | log(ti)|λ−1fε (gλ(log(ti))− gλ(βXi)|ξ) , (4)

ST (ti) = Sε (gλ(log(ti))− gλ(βXi)|ξ) . (5)

For example, if one chooses the normal distribution for the error, that is,
εi ∼ N(0, σ2), then

fT (ti) =
| log(ti)|λ−1

ti
√

2πσ2
exp

{
− [gλ(log(ti))− gλ(βXi)]

2

2σ2

}
,

ST (ti) = 1− Φ

(
gλ(log(ti))− gλ(βXi)

σ

)
,

where Φ(·) is the standard normal distribution function. Density and survival
functions for the other error distributions in Table 1 can be easily obtained
from Equations (4) and (5) as well.

Given that Ti is a continuous variable (we assume time to be continuous),
we have that the hazard function is h(t) = f(t)/S(t), with f and S as
given by Equations (4) and (5), respectively. Because we can use distinct
error distributions, the proposed TBS model has a great variety of hazard
functions, which makes possible to fit many data types/shapes. Figure 1a
presents hazard functions when the error is assumed to be from a normal
distribution, while Figure 1b has hazard functions when the error distribution
is defined as double-exponential (Laplace distribution). Both figures show
that the TBS model can be adapted to increasing, decreasing, bathtub and
other types of hazard functions.

Another relevant function in survival analysis is the quantile function.
Define ε(α) as the α-th quantile of ε, that is, Sε(ε(α)) = 1 − α. To obtain
the α-th quantile of the survival time, that is, the function t(α) such that
ST (t(α)) = 1− α, we simply substitute εi in Equation (3) by ε(α) and obtain

t(α) = exp
{
g−1
λ

[
gλ(βX) + ε(α)

]}
. (6)

The median survival time t(0.5) can be obtained from Equation (6) by
using the fact that the error distribution is symmetrically centered at zero,
which implies in ε(0.5) = 0. Thus,

t(0.5) = exp
{
g−1
λ [gλ(βX)]

}
(7)

= eβX (= eβ0+β1X1+···+βkXk).
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Figure 1: Hazard functions for error distribution defined as (a) normal and
(b) double-exponential, no covariates and β0 = 1.

Table 2 presents the quantile functions derived for the five error distributions
that we discuss in this paper.

Table 2: Quantile functions for the error distributions.

Distribution Parameters ε(α)

Normal ξ = σ2 σ2Φ−1(α)

DoubExp ξ = b −b sign(α− 0.5) log(1− 2|α− 0.5|)
Student’s t ξ = η (d.f.) Ψ−1

η (α)

Cauchy ξ = c c tan(π(α− 0.5))

Logistic ξ = s s log(α/(1− α))

Φ−1 is the inverse of the standard normal distribution function, Ψ−1
η is the

inverse of the t distribution (with η degrees of freedom) distribution function.

As a simple example, consider a binary covariate X1 such that X1 = 1
stands for the presence of some characteristic, while X1 = 0 stands for its
absence. In this case, we have βX = β0 + β1X1, and the quantity so called
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median odds O can be evaluated by

O =
median(T |X1 = 1)

median(T |X1 = 0)
=
eβ0+β1

eβ0
= eβ1 , (8)

which may be interpreted as “the median life time of subjects presenting the
given characteristic is O times higher than the median life time of subjects
without it” (note that life time is in fact lower if O is less than one). In this
situation, the estimate of median(T ) depends neither on the parameter λ nor
on the parameter ξ of the error distribution. This is an important property
of the TBS model, which implies that for any choice of error distribution and
value of λ, the interpretation of the parameters β is directly related to the
median survival time. In fact, the parameters β can be seen as logarithms of
the median survival time, which facilitates inferences and helps with the elic-
itation of meaningful priors. For instance, it is easy to perform a hypothesis
test for the difference in survival time caused by the characteristic X1 = 1,
by using the null hypothesis H0 : β1 = 0; or to elicit subjective priors of
a physician that has an opinion about the median survival time of patients
with and without some characteristic.

3. Estimation Methods

Let the observed data be D = ({yi, δi,xi}, i = 1, . . . , n), where yi =
min{ti, ci} is the observed survival time, δi = 0 if ti ≥ ci (right censoring),
δi = 1 if ti < ci (no censoring), and xi = (1, x1,i, . . . , xk,i)

′ is the observed
value of Xi. As usual, we assume that the actual survival time Ti and the
censoring time Ci are independent. This section presents the estimation
methods based on maximum likelihood estimation (MLE) and on Bayesian
estimation (BE) for the distribution of Ti.

3.1. Maximum likelihood estimation

Using the TBS model, the likelihood function for the given data is defined
by the following equation:

L(λ,β, ξ | D) =
n∏
i=1

fT (yi | λ, ξ,β,xi)δiST (yi | λ, ξ,β,xi)1−δi . (9)

For the case with no censoring, we have δi = 1 for every i, which is a particular
case of the likelihood in Equation (9) where ST disappears. For numerical
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convenience, we maximize the log-likelihood function, which can be written
as

l(λ,β, ξ | D) =
n∑
i=1

(δi log [fT (yi | λ, ξ,β,xi)] (10)

+ (1− δi) log [ST (yi | λ, ξ,β,xi)]) .

Unfortunately, there is no closed form solution for the (log-)likelihood
maximization problem, and the numerical optimization of Equation (10) to-
wards a global optimum solution is not in general an easy task. One impor-
tant characteristic of it is the existence of partial derivatives with respect to
the unknowns (λ,β, ξ), which helps numerical methods in finding good solu-
tions for the maximization problem. In order to avoid some local maxima, we
approach the problem by using a collection of different optimization meth-
ods, as well as multiple starting points (this should usually yield reasonable
estimates).

Regarding the implementation, we develop tbs.survreg.mle, a function
which acts as a wrapper to the TBS internal optimization procedure. The
optimization is conducted by calling many different numerical methods of
the optim function (R Development Core Team, 2012), namely Nelder-Mead,
Broyden-Fletcher-Goldfarb-Shanno (BFGS), Conjugate Gradient (CG), and
Simulated Annealing (SANN), and the augmented Lagrange multiplier meth-
od of Rsolnp (Ghalanos and Theussl, 2011). Finally, the best solution (in
terms of likelihood) is returned. The TBS internal optimization procedure
implements a multiple starting point idea, executing the maximization as
many times as desired. It can also perform some fallbacks among methods
in order to find feasible starting points, which are important for all of the
previously mentioned numerical methods. The procedure makes use of the
TBS density function dtbs and distribution function ptbs, which may vary
according to the selection of the error distribution (this is implemented in a
transparent manner to the user).

3.2. Bayesian estimation

In order to perform the Bayesian estimation, we need to compute the
posterior distribution of (λ,β, ξ). We consider independent priors for the
parameters, that is,

p(λ,β, ξ|D) ∝ L(λ,β, ξ | D)p(λ)p(β)p(ξ),
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where L(λ,β, ξ | D) is the likelihood function given in Equation (9), and
p(λ), p(β) and p(ξ) are prior densities.

Based on the characteristics of the transformation gλ, the most plausible
values for λ lie on the interval (0, 3), and thus we use a prior distribution with
high density for values within that interval and a decreasing density for values
larger than 3. Considering that the parameter ξ of the error distribution is
directly related to its variance (according to the distributions used in this
work), we suggest a prior that favors points in the interval (0, 2), because we
do not expect the error distribution to have too large a variance.

As mentioned before, an important property of the TBS model is the
interpretation of the parameters β in terms of median survival time and
median ratios. For this reason, the elicitation of priors for β is usually an
easy task, for example by asking some quantiles to the specialist. Using
Equations (7) and (8), it is possible to translate the specialist’s prior median
into values of β. In the TBSSurvival package, we take the normal density for
this prior, but we leave mean and variance to be chosen by the user (default
values are set nevertheless).

As in the maximum likelihood estimation, there is no closed-form solution
for the Bayesian estimators. In fact, in the case of Bayesian estimation, we
cannot even find a closed-form solution for the posterior distribution. Hence,
we are constrained to the use of simulation methods, such as the Metropolis-
Hastings algorithm, to generate a sample from the joint posterior distribution
in order to evaluate it. We implement the tbs.survreg.be function, which
processes the data, calls the function metrop of the mcmc package (Geyer,
2010) to simulate from the posterior density, and consolidates the results to
obtain the final estimation. More implementation details are available in the
TBSSurvival documentation.

4. Experiments

In this section we present experiments with both simulated and real sur-
vival data. We show two real data examples to illustrate the use of the
package and the performance of the TBS model. We also perform a simula-
tion study to show the quality of the TBS model in a large amount of samples.
Additional study cases, including examples with real data, are available and
explained in the documentation of the estimation functions and in the test
codes of the package. We start by a simulation study that compares TBS
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Table 3: Bias and mean squared error (MSE) for the parameter estimates
with MLE using simulated data (1000 copies) from the TBS model with
multiple distinct values of (λ, ξ, β0).

λ̂ ξ̂ β̂0

Dist. Cens. Bias MSE Bias MSE Bias MSE

Normal 0% 0.0010 0.0052 -0.0121 0.0520 0.0004 0.0025
20% 0.0036 0.009 -0.0148 0.0728 0.0006 0.0025
40% 0.0060 0.0149 -0.0213 0.1114 0.0003 0.0027
60% 0.0111 0.0265 -0.0418 0.3344 -0.0037 0.0049

DoubExp 0% 0.0015 0.0051 0.0023 0.0066 -0.0009 0.0031
20% 0.0038 0.0086 0.0036 0.0084 -0.0009 0.0031
40% 0.0078 0.011 0.0043 0.0096 -0.0009 0.0031
60% 0.0098 0.0144 0.0051 0.0122 -0.0020 0.0056

Student’s t 0% -0.0016 0.0028 -0.0156 0.0138 0.0013 0.0026
20% -0.0126 0.0032 -0.0256 0.0158 0.0034 0.0053
40% -0.0136 0.0027 -0.0361 0.0189 -0.0105 0.0048
60% -0.0190 0.004 -0.0365 0.0196 0.0001 0.0062

Cauchy 0% -0.0197 0.0038 -0.0254 0.0091 0.0002 0.0027
20% -0.0094 0.0031 -0.0114 0.0080 0.0018 0.0064
40% -0.0109 0.0034 -0.0081 0.0090 0.0002 0.0065
60% -0.0128 0.0041 0.0016 0.0149 0.0075 0.0098

Logistic 0% 0.0008 0.003 -0.0008 0.0040 0.0033 0.0097
20% 0.0018 0.0045 -0.0003 0.0048 0.0034 0.0097
40% 0.0039 0.0066 0.0002 0.0059 0.0030 0.0100
60% 0.0063 0.0105 0.0007 0.0098 0.0017 0.0193

with other available methods. A detailed description of the package usage is
given in Section 4.2, together with the real data examples.

4.1. Simulation study

We analyze the proposed parametric TBS model in two distinct situa-
tions: (i) we simulate data in order to understand the TBS’s ability to fit
them; (ii) we compare estimation methods in the literature with the MLE
and the Bayesian estimator of TBS (and themselves with each other).

The first simulation study has data generated from the TBS model for
each of the five error distributions and each of the four censoring levels (0%,
20%, 40%, 60%), that is, 20 different combinations. Within each of these
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combinations, we have simulated data according to different values of the
TBS parameters λ, ξ, and β0 (no covariates are used here) such that the
experiment is not specific to a single choice of values. The used values are
as follows: λ = 0.5, 1, 2, ξ = 0.5, 1, 2 and β0 = 1, 5, which comprises 3 ×
3 × 2 = 18 scenarios. For each of these scenarios, we generate data with
sample size of 1000 units, and we repeat this process with 1000 different
copies, giving a total of 18 thousand replications for each censoring level and
error distribution. Using MLE (and all numerical optimizers, from which we
took the maximum likelihood one) in each of these 20× 18 thousand copies,
we produce the estimates (λ̂, ξ̂, β̂0) whose bias and mean squared error are
averaged and presented in Table 3. We see that bias and mean squared error
of each estimated parameter is reasonably close to zero. The aim of this
simulation study is to assert that the parameters of TBS model are correctly
estimated when data are generated from the own model.

In a second simulation study, we compared the performance of the TBS
model against the estimators of Portnoy (2003) and Peng and Huang (2008),
using the implementation available in the R package quantreg. We have gen-
erated data from the TBS model with normal error distribution, one binary
covariate, twenty different combinations of the parameters (λ = {0.5, 1.5},
ξ = {0.5, 1.5}, β = {(−1, 1), (1,−1), (−0.5, 0.5), (0.5,−0.5), (0.5, 0.5)}),
and two sample sizes (n = 100, 1000). The covariate X was generated from
a Bernoulli distribution with probability of success 0.7. As for the censoring
mechanism, we have considered a fixed value κ such that if Ti > κ, then the
observed time was censored and its value set to κ (for example, this simulates
a period of product testing within a factory; after that period, the survival
time is censored). The value of κ was chosen such that approximately 20% of
censored data were present in each case. Using these data, we have performed
the estimation at five distinct quantiles (5%, 25%, 50%, 75% and 95%), eval-
uating the bias and the mean squared error (MSE). The TBS estimation
with the Bayesian method was done with the default fixed values as defined
in the TBSSurvival package for the MCMC procedure. This can lead to non-
convergence of the MCMC chain, which we have not checked (it would be
extremely time-consuming to manually verify the convergence of the MCMC
in each case of these many simulations). Despite of that, the Bayesian es-
timator performed very well. For the MLE estimation, we have chosen to
run three optimization methods with quite different internal characteristics
(BFGS, Nelder-Mead and Rsolnp), from which the TBS estimation method
automatically chooses the best (for each test case). The error distribution
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has been defined as normal in all test cases, so we expected that estimated
values from the TBS model should have lower bias and MSE when compared
to values estimated with Portnoy (2003) and Peng and Huang (2008), which
in fact has happened. The results are shown in Table 4. Because of the
characteristics of these two other estimators, it was not possible to perform
the estimation at the 95% quantile of the survival time (some of the cases
for the 75% quantile and n = 100 were also impossible to be estimated).
This can be seen by the percentage of successful estimations (lines marked
with a (%) in Table 4). In one hand, all methods presented similarly good
results for small quantiles (5%, 25% and 50%). On the other hand, the TBS
model has estimated well even for high quantiles, although we notice that
the MSE has considerably increased in such cases. These results suggest that
the estimation with the non-parametric quantile regression model is as good
as the parametric TBS model apart from estimations at high quantiles, and
thus should be preferred at low quantiles. This is however dependent on hav-
ing relatively small amount of censored data, otherwise quantile regression
models may face some estimation problems, which is later discussed in our
real data applications. We note that a comparison against the model of Lin
et al. (2012b) was not possible because their method showed poor MCMC
convergence. In fact, the chain converged, however we obtained high auto-
correlation, so we could not guarantee independence of the generated points
from the posterior. We have also noticed that the model of Lin et al. (2012b)
seems to work better for small sample sizes (n ≤ 100).

In our experiments, we cannot report a single best continuous optimiza-
tion method to be used inside the MLE. We suggest the user to run at least
BFGS, Nelder-Mead and Rsolnp, since CG is similar in essence to BFGS
and SANN is a very slow procedure. According to our experiments, CG
and SANN are recommended only when the others fail. Thus, we have im-
plemented this idea in our package: if the chosen method fails to find even
a feasible solution, SANN is automatically called too. One can also think
of how to choose an error distribution. This again depends on the prob-
lem instance, and it is not possible to tell in advance which distribution will
perform the best. For example, we might say that the parameter of the Stu-
dent’s t distribution approximates very well both the normal and the Cauchy
distributions, so it should be preferred to the other two. However, because
of the distinct nature of the parameters of each distribution (degree of free-
dom for Student’s t, which controls its tails, while for normal and Cauchy
the parameter is about their scales), we would have different models, so nor-
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Table 4: Comparison of estimation methods for 20% right-censored data
generated from the TBS model with normal error distribution. Columns
show the estimation error in some specific quantiles. For the estimations of
Portnoy (2003) and Peng and Huang (2008), it is also shown the percentage
of cases where the method has found a solution.

n 5% 25% 50% 75% 95%
Portnoy 100 Bias -0.038 -0.017 -0.051 -0.390 –

MSE 0.008 0.026 0.120 0.646 –
(%) 1.000 1.000 1.000 0.434 0.000

1000 Bias -0.019 -0.012 -0.031 -0.074 –
MSE 0.001 0.002 0.014 0.056 –
(%) 1.000 1.000 1.000 0.976 0.000

Peng-Huang 100 Bias -0.001 0.019 0.026 -0.099 –
MSE 0.007 0.030 0.128 0.410 –
(%) 1.000 1.000 1.000 0.724 0.000

1000 Bias 0.003 0.007 0.017 0.036 –
MSE 0.001 0.002 0.014 0.062 –
(%) 1.000 1.000 1.000 0.981 0.000

TBS MLE 100 Bias 0.006 0.014 0.011 -0.004 -0.116
MSE 0.002 0.018 0.091 0.475 3.110

1000 Bias 0.000 0.002 0.005 0.006 -0.002
MSE 0.000 0.001 0.010 0.045 1.586

TBS BE 100 Bias 0.000 0.014 0.032 0.111 0.186
MSE 0.003 0.019 0.101 0.631 3.150

1000 Bias -0.002 0.001 0.006 0.024 0.119
MSE 0.000 0.002 0.009 0.056 1.562
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mal and Cauchy distributions shall be considered as reasonable options too.
The TBSSurvival package allows us to evaluate and compare different error
distributions in order to take an informed decision.

4.2. Real data sets

Two study cases with real data sets are considered: one for the reliabil-
ity of equipments and another with the survival time of patients with colon
cancer. In the first data set, we perform an inferential analysis of the Alloy
T7987 data set (Meeker and Escobar, 1998, pp. 130–131) using the estima-
tion of the TBS model with the five described error distributions (of Table
1) using both MLE and BE. Throughout the analysis, we provide the R code
that illustrates the use of the TBSSurvival package. The data consist in
a sample of 67 specimens of the equipment Alloy T7987 that failed before
having accumulated 300 thousand cycles of testing and 5 specimens that
survived at least 300 thousand cycles without failure (this was the censoring
time). In Table 5, some summary statistics of the failure time are presented.

Table 5: Summary statistics of the failure time in thousand cycles for the
Alloy T7987 data set.

Min. 1st Qu. Median Mean 3rd Qu. Max.
94.0 135.8 168.0 175.4 198.5 300.0

The function tbs.survreg.mle is used to perform the MLE, here assum-
ing no covariates. The only necessary argument to the estimation function
is the survival formula with the time of events and the censoring indicator
delta from the Alloy data set as arguments. The usage is very similar to
the usage of the estimation functions in the survival package (Therneau,
2012). This is convenient if one wants to adapt code that already contains
those estimation functions to be used with TBS. For the Alloy T7987 data
set, the MLE can be performed using the following R code:

library("TBSSurvival")

data(alloyT7987)

tbs.mle <- tbs.survreg.mle(Surv(alloyT7987$time,

alloyT7987$delta) ~ 1,

dist=dist.error("all"))

14



The above code runs the MLE estimation using all available optimization
methods, then chooses automatically the best one for the data. Furthermore,
it automatically estimates with all the five error distributions discussed previ-
ously, returning the estimation for each one of them, as well as an indication
of the model with best Akaike information (accessible through the element
tbs.mle$best).

Table 6 presents some characteristics of the estimated model: the Akaike
information criterion (AIC), the Bayesian information criterion (BIC), the
parameter estimates and (in parenthesis) the standard error of the parameter
estimates for the MLE. The results in Table 6 were especially formatted for
this paper, and they can be obtained using the function

print(tbs.mle)

We see that the TBS model, for this data set, has better fit (lowest AIC)
when the error distribution is normal. Figure 2 presents the reliability (that
is, survival) and hazard functions for the estimated TBS model. Figure 2a
also shows the Kaplan-Meier estimated curve for comparison. These figures
are obtained using the following code:

### Survival plot

plot(tbs.mle$norm)

km <- survfit(formula = Surv(alloyT7987$time,

alloyT7987$delta == 1) ~ 1)

lines(km) # add the Kaplan-Meier estimates to the

# survival plot.

### Hazard plot

plot(tbs.mle$norm,plot.type="hazard")

Another aspect that can be used to verify the goodness of fit is to check
whether the errors εi follow the estimated error distribution and whether
their values are close to zero. Table 7 gives the summary statistics of the
error, which shows a reasonably good fit of the model to the data. Table
7 and some other results, such as the Wald’s test for the parameters β, are
obtained using

summary(tbe.mle$norm)
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Table 6: Some quantities of the TBS Model for the Alloy T7987 data set
using MLE: AIC, BIC, parameter estimates and their standard errors in
parenthesis.

Error Distribution AIC BIC λ̂ β̂0 ξ̂

Normal 737.95 744.78 0.0301 5.1214 0.0044
(0.1161) (0.0384) (0.00142)

DoubExp 740.25 747.08 0.0021 5.1240 0.0506
(0.4751) (0.0114) (0.03883)

Student’s t 741.76 748.59 1.6855 5.1311 51.6520
(0.1994) (0.0739) (1051.07353)

Cauchy 751.71 758.54 0.0028 5.0879 0.0368
(0.9660) (0.0346) (0.05759)

Logistic 738.39 745.22 0.0068 5.1066 0.0373
(1.0979) (0.0388) (0.06671)
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Figure 2: Alloy T7987 data set (MLE): (a) Survival function (continuous line
regards the estimated TBS model with normal distribution for the error; the
step function regards the Kaplan-Meier estimates) and (b) hazard function
(estimated by the TBS model with normal distribution for the error).
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Table 7: Summary statistics of the error with the TBS model, using MLE
and the normal distribution for the error.

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.12690 -0.04809 -0.01204 -0.01223 0.02267 0.10650

As explained in Section 2, the median survival/failure time can be esti-

mated by eβ̂0 (β̂0 is the usual notation for an estimate of β0), and the 95%
confidence interval for the median can be obtained by(

exp
{
β̂0 + φ(0.025)sd(β̂0)

}
, exp

{
β̂0 + φ(0.975)sd(β̂0)

})
, (11)

where φ(α) is the α quantile of a random variable with standard normal
distribution. The R code to perform these calculations is:

### Quantile estimates

# Median survival/failure time:

exp(tbs.mle$norm$beta)

### 95% I.C. for the median failure time

# lower bound:

exp(tbs.mle$norm$beta+qnorm(0.025,0,1)*tbs.mle$norm$beta.se)

# upper bound:

exp(tbs.mle$norm$beta+qnorm(0.975,0,1)*tbs.mle$norm$beta.se)

Using these formulas, we obtain the median as 167.57 and the 95% confidence
interval as (155.41, 180.68). Note that the estimated median failure time is
very close to the median given in Table 5, probably because there are only
7% of cases with censored data.

Now we turn our attention to the Bayesian estimation. In order to per-
form BE, we employ the function tbs.survreg.be. It receives as arguments
the same formula as the one used for the MLE, plus the initial guess val-
ues and some usual control parameters for the Markov Chain Monte Carlo
(MCMC) procedure, which follow the convention of the function metrop of
the mcmc package (Geyer, 2010) (for more details on the control parameters,
we refer to Gamerman and Lopes (2006), Chapter 6). It also allows the
user to define prior.mean and prior.sd, the hyper-parameters for the prior
distribution, as described in Section 3.2.
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Table 8 presents the deviance information criterion (DIC), parameters’
point estimates (posterior mean) and their standard deviations from the pos-
terior distribution of the parameters. For the Bayesian estimation, we see
that the TBS model has best fit when the error distribution is the logistic
(according to the DIC), which differs from the MLE case, where the nor-
mal distribution has had the best fit. The Gelman-Rubin statistics for the
parameter estimates λ̂, ξ̂, and β̂0 are, respectively, 1.006, 1.002, and 1.000,
which indicates that the convergence of MCMC was considerably good. We
have used four chains with different initial values to evaluate the Gelman-
Rubin Statistic. The burn-in used was 500 thousands, the jump between
observations was two thousands, and the sample size of the posterior was
one thousand (these values are greater than the usually required ones, so the
convergence results should be accurate enough). Since the convergence of
MCMC sampling from the posterior distribution depends on user verifica-
tion, it is not possible to implement an automatic method to chose the best
model (distribution error) in the case of the Bayesian analysis. For instance,
the BE with logistic distribution for the error is achieved using the code:

tbs.be.logistic <- tbs.survreg.be(Surv(alloyT7987$time,

alloyT7987$delta) ~ 1,

dist=dist.error("logistic"),

burn=500000,jump=2000,

size=1000,scale=0.07)

print(tbs.be.logistic)

summary(tbs.be.logistic)

For the estimation using other error distributions one can just change the
dist.error() call within the arguments of tbs.survreg.be and check the
convergence of the MCMC samples.

We also computed the high posterior density (HPD) interval with 95%
of credibility, obtaining median equal to 166.75 and HPD interval equal to
(153.64, 179.82). A possible advantage of BE over MLE is that one can easily
evaluate the HPD boundaries for the survival function, as shown in Figure
3. The R code to build the HPD for the median survival/failure time and the
code to generate the graphs are:

### Quantile estimates

# Median failure time (post[,3] contains the info about beta):

median(exp(tbs.be.logistic$post[,3]))
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Table 8: Some quantities of the TBS model for the Alloy T7987 data set using
BE: DIC, parameter estimates and their standard deviations in parenthesis.

Error Distribution DIC λ̂ β̂0 ξ̂

Normal 727.55 1.4743 5.1294 0.994
(0.4311) (0.0392) (1.0008)

DoubExp 729.43 1.4822 5.106 0.9014
(0.6198) (0.0365) (0.74612)

Student’s t 739.74 1.6742 5.132 72.37
(0.0549) (0.0399) (19.74458)

Cauchy 745.83 1.8302 5.0822 1.0267
(0.5929) (0.0351) (0.7146)

Logistic 719.39 1.5247 5.1165 0.7392
(0.6756) (0.041) (0.65695)
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Figure 3: Alloy T7987 data set (BE): (a) Survival function (continuous black
line regards the estimated TBS model with logistic distribution for the error;
gray lines show the 95% HPD credible interval; the step function regards
the Kaplan-Meier estimates) and (b) hazard function (black line is for the
estimated TBS model with logistic distribution for the error; gray lines show
the 95% HPD credible interval).
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### 95% I.C. for the median failure time

HPDinterval(as.mcmc(exp(tbs.be.logistic$post[,3])),0.95)

### Survival plot

plot(tbs.be.logistic)

### Hazard plot

plot(tbs.be.logistic,plot.type="hazard")

In the second study case, we use the well-known colon data set from the
package survival (Therneau, 2012), with right-censored survival data and
covariates for patients with colon cancer. Our goal is to demonstrate the use
of the TBS model for survival analysis with covariates. For that purpose,
we use a covariate, available in the data set, which indicates whether the
number of cancer-affected lymph nodes is greater than 4. This variable is
known to split the patients in groups of distinct survival outcome. The sur-
vival data correspond to Progression Free Survival (PFS) time, that is, time
until disease recurrence. The function call for the TBS estimation procedure
in the presence of covariates follows the same standard as in R formulas,
for example Surv(colon$time,colon$status) ~ colon$node4, using the
covariates on the right-hand side. We omit further implementation details,
because they follow the very same structure as the one presented for the
Alloy data set. Figure 4 shows the estimated survival curves using MLE and
BE. The Kaplan-Meier estimation is also presented for comparison. We see
that the HPD credible intervals nicely encompass the Kaplan-Meier curves.
Using the TBS model with the Bayesian estimation, the median PFS time for
patients with more than four affected lymph nodes is 841.08 days, with 95%
credible interval (c.i.) equal to (695.37, 982.69), while for patients with less
than or equal to four lymph nodes is 3372.81 days, c.i. (2920.62, 3831.99).
The median odds O, as described in Section 2, is 0.25, c.i. (0.2, 0.31), which
means that the median PFS time for patients with at most four affected
lymph nodes is four times the median PFS time of the others. Note that, by
using the median odds with the TBS model, we are able to obtain confidence
intervals for O. Results using the MLE are very similar, and so omitted.

Finally, we point out that methods available in the R package quantreg for
non-parametric quantile regression models have also produced good estimates
when targeting low quantiles of the Colon data set, but were not able to
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Figure 4: Colon data set: (a) MLE estimation and (b) BE estimation using
the number of lymph nodes greater than four as discriminant between the
two groups of patients (dashed gray line is the curve for patients with at
most four affected lymph nodes; solid gray line is for patients with more
than four affected lymph nodes; black step function regards the Kaplan-
Meier estimates; in the BE plot, the dot lines show the 95% HPD credible
interval).
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estimate the median (more specifically, they have failed with quantiles greater
than 45%, approximately), likely because of the considerably high amount of
censoring in these data.

5. Closing Remarks

We presented the parametric regression model based on the Transform-
Both-Sides (TBS) with log-linear median, where a parameter handles the
data asymmetry, while the error distribution can be any unimodal symmetric
distribution centered at zero. We explicitly worked with five error distribu-
tions, namely normal, double-exponential, Student’s t, Cauchy and logistic.
We presented the relevant functions that characterize the model (density,
survival distribution, hazard, and quantile) and developed the maximum like-
lihood estimation and the Bayesian estimation, along with some additional
methods for confidence/credible intervals.

The TBS model has been illustrated with applications in both simulated
and real data sets, and has been compared to quantile regression models.
When one has to deal with the estimation of low quantiles and/or data
without much censoring, quantile regression models are a very good option.
However, they may fail to estimate high quantiles when there is a considerable
amount of censored data, in which case the TBS model seems to be more
suitable. Besides quantile estimation, we also discuss on how TBS can be
used to compare treatments and to help in eliciting subjective priors.

These procedures have been implemented using the R language in the
TBSSurvival package, which we made freely available. The main procedures
work similarly to other widely used packages for survival analysis, which
allows the user to promptly replace their estimation methods by the estima-
tion with TBS methods, if they will. The implementation is already mature,
even though we will continue to enhance it, specially towards new distribu-
tion functions and faster and more accurate numerical optimization methods
for the estimation, which we acknowledge to be an important point that can
be improved. Other extensions to the package are also planned, including
the semi-parametric estimation, and the treatment of other censoring types.
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