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Abstract. This paper describes an Imprecise Dirichlet Model and the
maximum entropy criterion to learn Bayesian network parameters under
insufficient and incomplete data. The method is applied to two distinct
recognition problems, namely, a facial action unit recognition and an
activity recognition in video surveillance sequences. The model treats a
wide range of constraints that can be specified by experts, and deals
with incomplete data using an ad-hoc expectation-maximization pro-
cedure. It is also described how the same idea can be used to learn
dynamic Bayesian networks. With synthetic data, we show that our pro-
posal and widely used methods, such as the Bayesian maximum a pos-
teriori, achieve similar accuracy. However, when real data come in place,
our method performs better than the others, because it does not rely on
a single prior distribution, which might be far from the best one.

1 Introduction

Bayesian Networks (BNs) encode joint probability distributions using a compact
representation based on a directed acyclic graph where nodes are associated to
random variables and conditional distributions are specified for variables given
their parents in the graph. The adoption of BNs has increased in the past years.
For instance, recent research in computer vision uses BNs for representing causal
relationships in facial expression recognition, image segmentation, visual surveil-
lance, activity understanding, among others [17, 21].

Accuracy of results relies on the quality of model parameters. Ideally, with
enough data, it is possible to learn parameters by standard statistical methods
like maximum likelihood (ML) or maximum a posteriori (MAP) estimations.
However, learning reliable parameters may require a large amount of training
data. In spite of that, approximate domain knowledge through constraints on
parameters is available in many real applications and can improve estimations.
We propose a framework for parameter learning that combines training data
and domain knowledge in the form of constraints, and where imprecise priors
are considered. We use the Imprecise Dirichlet Model (IDM) [18] to work with
prior distributions so that we have a set of Dirichlet distributions on which we
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apply the maximum entropy principle to obtain a final estimation. The impre-
cise priors may be viewed as a conservative choice when data are scarce to avoid
overfitting. Furthermore, the proposed idea requires less hyper-parameters to be
specified by the user (for instance, we do not need to define the prior of a max-
imum a posteriori estimation), which makes it reliable and adaptive, as shown
in the experiments with real data. In our formulation, convex programming can
be used, which quickly finds the global optimum solution. For incomplete data
sets, a variant of the Expectation-Maximization method is used, where the ex-
pectation step is done as usual and the maximization is replaced with the new
formulation. The methods are general and deal with Dynamic Bayesian Net-
works as well. Experiments with synthetic and real data from a facial action
unit recognition and a human activity recognition captured with surveillance
cameras show better results than ML and Bayesian MAP results, which are
among the most used methods to learn such networks.

Previous work has either explored constraints together with a precise crite-
rion, such as isotonic regression [10], closed-form solutions for the constrained
ML estimation with complete data [16], constrained EM method with penalties
[11], or has used an imprecise model, such as the naive and the tree-augmented
credal classifiers [6, 7] or the imprecise decision trees [1]. Lukasiewicz [14] explores
maximum entropy properties, but does not discuss a parameter learning proce-
dure. de Campos and Cozman [4] work with constraints on priors and formulate
the learning problem as a constrained optimization problem, but their formula-
tion is restricted to complete data sets and uses a (somewhat slow) non-convex
optimization procedure.

The paper is divided as follows. Section 2 introduces the notation and the
problem of parameter learning. Maximum entropy and the Imprecise Dirichlet
Model are presented, as well as constraints that can be used to guide the learning.
Section 3 summaries the learning model and discusses the case of incomplete
data. Section 4 presents experimental results and Section 5 concludes the paper.

2 BNs, Dynamic BNs and Parameter Learning

A BN can be defined as a triple (G, X', P), where G is a directed acyclic graph with
nodes associated to random variables X = {X7,..., X,,} (which we assume to be
categorical), and P is a collection of parameters p(xx|m;;), with >, p(zix|mi;) =
1, where z;;, € f2x, is a category or state of X; and m;; € Xyenr, {2y a complete
instantiation of the parents m; of X; in G (j is viewed as an index for each
parent configuration). In a BN every variable is conditionally independent of its
non-descendants given its parents. The joint distribution is obtained by p(z) =
[L p(@ix|mij), with 2 € X and all z;;, and 7;; compatible with .

We focus on parameter learning in a BN where the structure (i.e. the graph)
is known. Given a data set D where each element is a sample of the BN variables,
the goal is to find the most probable values for the whole parameter set P. One
way to quantify the result is by the log likelihood function log(p(D|P)). Assum-
ing that samples are drawn independently from the underlying distribution, we
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maximize log Hijk p(xik|mi5) 9%, where n; ;) indicates how many elements of D

contain both z;;, and m;;. ML estimation has its optimum at p(x;|m;;) = %
ik

Dynamic Bayesian Networks (DBNs) can be viewed as two-slice temporal
BNs, where at time zero, we have a standard BN just as described, and for
slices 1 to T a transitional BN is defined over the same variables but nodes
have parents on time ¢ and/or time ¢ — 1. Conditional probability distributions
for time t > 0 share the same parameters so that we can unroll the DBN to
obtain the factorization p(Xy.7) = [], po(X;|m;) Hthl [L; p(X}|7}), where T is
the number of slices, po(-) are conditional distributions of the initial BN and
X! w! represent the corresponding variables in time ¢. Learning parameters of
DBNs is similar to the BN case, but we deal with counts n;;; for both the initial
BN and for the transitional BN. Thus counts are obtained from data sets with
time sequences. In other words, we can reduce the learning problem in a DBN to
the BN learning by carefully counting the frequencies on the data set. Therefore,
all following discussion can be applied to both BNs and DBNs. We point out
when additional care for DBNs is needed.

2.1 Constraints

When small amount of data is available, standard estimation methods may pro-
duce unreliable results. Constraints are available in many applications and may
improve results. We describe here some constraints that may be accommodated
in our learning procedure. In fact, such constraints can also be employed in
the ML and the Bayesian MAP estimations, and we fully compare our method
against these others (including their constrained versions). Constraints might be
very effective, as we show for two computer vision problems (Section 4).

Let P be a sequence of parameters, a a corresponding sequence of constant
numbers and [ also a constant. A linear relationship constraint is defined as
Zp(xmmj)eP aij - p(aik|mi;) < B, that is, any linear constraint over parameters
can be expressed. Qualitative influences and synergies [19] are simple (but im-
portant) examples of linear constraints. Without quantitative statements, they
allow us to encode that a given value for a variable makes more likely to observed
another value in another variable, encoding an approximate domain knowledge.
Other examples are sum of parameters, range, relationship, and ratio constraints
[16], other types of influences and synergies, among many others. In fact, we have
a very general assumption: constraints must define a convex parameter space,
that is, any constraint in the form h(P) < 0, where h is convex, is allowed. Such
flexibility helps us to properly describe our knowledge, while keeping the con-
vexity assumption that guarantees a fast and global optimal algorithm. We have
no restriction regarding the number of times a parameter appears in constraints
or whether constraints involve distinct conditional distributions of the BN. They
only need to be local to a node, otherwise they would violate the Markov con-
dition of the BN. Although we do not use non-linear convex constraints in the
experiments, they are also possible. To illustrate, suppose a product relation-
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ship constraint defined as Hp(wiklm,-)ePp(xik‘ﬂij) > . Although non-convex, a
simple log transformation makes it convex.

2.2 Imprecise Dirichlet Model

With the ML formulation, the idea is to fit parameters and data, even if the
amount of data is very small. For example, with just a couple of samples, the
estimation through ML will likely return undesired answers, as data are not rep-
resentative of the actual distribution. Constraints applied to a ML formulation
may help, but still the estimation will tend to the “incorrect” answer inside the
space defined by the constraints. So only if the constraints are tight the perfor-
mance will greatly improve. Another possible way not to obtain these unreliable
estimations is to use a Bayesian approach, such as the MAP estimation, with
a predefined prior. In this case the question is about the choice of the prior. If
we can choose a good prior, such approach will lead to good estimations. How-
ever, in most cases the prior is hard to be selected and a non-informative prior
is chosen, which may be far away from the correct distribution. The Imprecise
Dirichlet Model (IDM) [18] alleviate such situations by introducing set-valued
estimations instead of single point estimations. The idea is that parameters are
more likely to be inside these sets, and so treating the whole set of estimations
can lead to more reliable results.

In a Dirichlet model, the goal is to learn the parameters of multinomial
distributions on X;|m;; using training data and a Dirichlet prior as parametric
model for X;|m;;, because of the conjugacy with the multinomial distribution
[8]. A possible parametrization is p(X;|mi;) o< [], p(@ik|mij)smd* =1 for s > 0
and ), 7;jx = 1, where the hyper-parameter s controls dispersion and hyper-
parameters 7;;, control location; s is interpreted as the size of a database en-
coding the same beliefs as the Dirichlet distribution. Using the IDM, s is fixed
(usually between one and two [18]) but 7;;, can freely vary between zero and
one, so that our estimation lies in the interval

Nijk 5+ Nyjk (1)

3+anijk 3+anijk'

This roughly means that we are conservative with respect to the prior: instead
of choosing a single prior, all possible priors (for a given s) are considered. We
point out that we are using a local version of IDM, where the imprecision is
(separately) considered for each local probability distribution that defines the
Bayesian network. As mentioned, the advantage of this formulation is to avoid
choosing the prior precisely as in the MAP estimation. Less hyper-parameters,
more robust is the model and less sensitive to wrong user input choices. However,
the outcome of IDM is a set of distributions. Next section describes and justifies
maximum entropy as a way to select a single estimation from this set.

< pwig|miy) <

2.3 Maximum Entropy

The maximum entropy principle [12] can be used as a criterion to select a sin-
gle conservative estimation from a set of distributions [1], in the sense that it
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avoids drastic conclusions. For example, a binomial distribution without con-
straints has the uniform distribution as the entropy maximizer. Furthermore,
the distribution of maximum entropy from a set of distributions learned with
IDM agrees (in the limit) with relative frequencies [18]. So, our goal is to have
a learning model that achieves better solution for small amount of data, but
which still tends to frequencies (as it should) when enough data are available.
Note that the application of maximum entropy goes towards the opposite of
ML, so it might seem at first contradictory, since we want to fit model and data.
However, maximum entropy is employed only inside the learned IDM, which is
responsible for the fitness (but considering all possible priors), while the idea
of picking the distribution of maximum entropy (inside IDM) avoids overfit-
ting by selecting the least fitting model among the IDM distributions. Thus, a
possible objective is maxp — 3, p(@ik|mi;) log p(zik|mi;), which is put together
with Equation (1), simplex constraints to ensure that answers are probability
distributions and convex constraints defined in Section 2.1. The set of all such
restrictions is denoted as C. This formulation is based on the local maximum
entropy criterion, that is, maximization is performed for each local conditional
probability distribution in the network. Another approach is the Sequential Max-
imum Entropy [14]. However, such more sophisticated idea cannot (at least in
a straightforward way) handle general constraints among parameters of distinct
(yet local) distributions (even simple qualitative influences [19] relate parameters
of distinct distributions). In Section 4 we present empirical results that support
the choice of local maximum entropy.

3 The Learning algorithm

In this section we summarize our formulation to solve the learning problem.
For complete data, the idea is simple: all pieces described so far (constraints,
IDM, and maximum entropy) lead to a convex optimization program. Just as
likelihood, entropy is concave, so we have a maximization of a concave function
subject to a collection C of convex constraints on parameters and the intervals of
IDM of Equation (1). The important technical detail that is worth mentioning
is that we use some auxiliary optimization variables to deal with the following
situation: constraints of C defined by the expert can force parameters to lie
outside the interval of Equation (1) imposed by the IDM, that is, in this case the
problem would be unfeasible. However, we assume that expert’s constraints are
always correct and shall be included in the model only if the expert is completely
sure about them (e.g. physical and physiological aspects, logical rules, domain
scope, etc). Because of that, they receive more importance than Equation (1).
To quantify this importance, we adopt an approach where the IDM interval
must be satisfied as much as possible, while constraints of C must be always
satisfied. The role of Equation (1) is to bring the estimation close to frequencies
of parameters in the data set: (i) if Equation (1) and expert’s constraints are not
disjoint, then there are solutions (in the intersection if these sets) that satisfy
all of them; one of them will be selected by entropy; (ii) if IDM intervals and
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expert’s constraints are disjoint, we choose to first satisfy expert’s constraints,
but preferring estimations that are as close to the IDM intervals as possible. We
leave for future analysis other ways to put together IDM and expert’s constraints.

In this formulation, as the data set is smaller, as the result is more conserva-
tive, because of the entropy maximization and the wider intervals of Equation(1);
as the data set is larger, as the result is closer to the ML estimation, because

the interval shrinks: —Soldik ik — 0 as the values n;ji,

S
S+ Mijk SO Mgk 54225 ijk
increase (s is fixed). Hence, p(z|m;;) becomes closer to % Thus, the for-
& Tij

mulation is (automatically) more careful with scarce data and more aggressive
towards the ML estimation with abundant data. We will see in the experiments
with real data that this formulation provides a better trade-off than ML and
than MAP. On the computational side, we have the challenge of solving the
convex optimization. For example, we can use specialized interior point solvers
or even some general optimization ideas, because convex programming has the
attractive property that any local optimum is also a global optimum. Further-
more, such global optimum can be found in polynomial time in the size of input
[3] (almost as fast as linear programming). Note that the input size here is small,
as the problem can be solved for each node separately.

In the remaining of this section we discuss how to deal with incomplete data.
Both the log-likelihood function and our formulation become non-convex, be-
cause the counts n;;; from the data set are not precisely known. A common
method to overcome this situation is the Expectation-Maximization (EM) algo-
rithm [9], which starts from some initial guess, and then iteratively takes two
types of steps (E-steps and M-steps) to get a local maximum. Particularly for
discrete nodes, E-step computes the expected counts using the parametrization
of the previous step, and M-step estimates new parameters by maximizing the
likelihood function, given the counts from E-step, just like if a complete data
set was in place. We can perform the same idea in our formulation. The E-step
computes expected counts as usual, and the M-step is replaced by our formu-
lation, with the constraints from C and from IDM. We stop when there is no
possible improvement. Because of the convexity of the parameter space and the
global optimizer, it suffices to include an extra linear constraint on C that forces
the optimizer of the M-step to pick always an improving solution in case there
is one, and thus the algorithm converges in the very same way as the EM. We
cannot guarantee that it converges towards a local optimum, as the original EM
also does not [20], but local optima are empirically verified in most situations.
About time complexity, the time spent with the new idea is dominated by the
E-step (which needs to perform queries in the network), and thus it is roughly
as fast as the original EM version (which needs to run the same E-step).

This same Expectation-Maximization idea can be straightforward applied to
DBNs. Note that the modified EM just described has a new M-step, but keeps
the E-step unchanged. DBNs require the inference procedure that evaluates the
expected counts to be adapted. As our formulation does not affect the E-step,
we can directly apply any usual inference method of DBNs. We have used the
Online Junction Tree Inference Algorithm [15] to obtain the expected counts,
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and then we treat the initial and transitional parts separately as if a complete
data set was in place. This is employed in Section 4.2 for activity recognition.

4 Experiments

We apply the idea to both synthetic and real data of distinct computer vi-
sion problems with the aim of showing its generality and applicability to other
problems. Figure 1 presents results for synthetic data of ML, Bayesian MAP
with Dirichlet prior, local maximum entropy and IDM, and a formulation using
sequential instead of local maximum entropy. The bars are average Kullback—
Leibler (KL) divergences for 20 runs of constrained ML (first bar of each series),
constrained MAP (second bar), constrained local maximum entropy and IDM
(third bar), and constrained sequential maximum entropy and IDM (last bar of
each series). The runs use random networks (random graphs with up to four
states per variable), constraints and data. The size of the networks and data are
presented in the figure’s labels. Networks have 10, 20 and 40 nodes and data
sets have 10, 100 and 500 samples. The same set of constraints and data were
applied to each method in each iteration. We use randomly generated constraints
in number equal to the number of local distributions in the network. We employ
a constrained MAP formulation that uses a prior where 7 is defined uniformly.
MAP, local entropy with IDM and sequential entropy with IDM achieve simi-
lar results, and they are better than likelihood estimations with respect to KL
divergences. For complete data, in some test cases MAP is slightly better than
maximum entropy, while in others it is slightly worse. There is an advantage of
the entropy with IDM against MAP, which relates to the amount of information
the user must provide. For random networks, the choice of uniform 7 as prior
is reasonable and achieves good results. On the other hand, maximum entropy
with IDM does not depend on a single prior but considers all possible priors,
so achieving similar results as MAP (which has the correct prior) is a positive
attribute, as maximum entropy with IDM requires less information as input and
is clearly more adaptive (e.g. in real data domains).

4.1 Facial Action Unit Recognition

We now consider the problem of recognizing facial action units from real image
data [13]. Based on the Facial Action Coding System, facial behaviors can be
decomposed into a set of Action Units (denoted as AUs), which are related to
contractions of specific sets of facial muscles. We work with recurrent 14 AUs.!
Some AUs happen together to show a meaningful facial expression: AU (cheek
raiser) tends to occur together with AUjs (lip corner puller) when someone
is smiling. On the other hand, some AUs may be mutually exclusive: AUqs

! AU, (inner brow raiser), AUs (outer brow raiser), AU, (brow lowerer), AUs (upper
lid raiser), AUg (cheek raiser and lid compressor), AUz (lid tightener), AUy (nose
wrinkler), AUz (lip corner puller), AUs (lip corner depressor), AUz (chin raiser),
AUss (lip tightener), AUs4 (lip presser), AUgs (lips part), and AUa7 (mouth stretch).
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Fig. 1. Comparison between methods for synthetic random generated models using
the KL divergence from the correct model. ML, even with constraints, is considerably
less accurate than others. The right graph excludes constrained ML to clarify that
differences are small among the other methods.

(lips part) never happens simultaneously with AUy (lip presser) since they are
activated by the same muscles but with opposite motions.

A BN with 14 hidden nodes is employed, which has already demonstrated
good performance in the literature [5, 17]. Each node is associated to an AU with
two states: activated and deactivated. Figure 2 depicts the structure of the BN.
Note that every link between nodes has a sign, which is provided by a domain
expert. Signs indicate whether there is positive or negative qualitative influence
between AUs. For example, it is difficult to do AUz (outer brow raiser) alone
without performing AU; (inner brow raiser), but we can do AU; without AUs.
The constraints are mainly based on physiological aspects, e.g. mouth stretch
increases the chance of lips apart, and it decreases the chance of cheek raiser
and lid compressor and lip presser. Cheek raiser and lid compressor increases
the chance of lip corner puller. Upper lid raiser increases the chance of inner
brow raiser and decreases the chance of nose wrinkler. Nose wrinkler increases
the chance of brow lowerer and lid tightener. Lip tightener increases the chance
of lip presser. We note that constraints are not tuned, but created by an expert.

Furthermore, 14 measurement nodes (unshaded in Figure 2, one for each AU)
represent results derived from computer vision techniques. Links between AU
and measurement nodes represent uncertainties in classifications. To obtain the
measurement for each AU, first the face and eyes are detected in the images, and
the face region is extracted and normalized based on the detected eye positions.
Then each AU is detected individually by a two-class AdaBoost classifier with
Gabor wavelet features [2]. The output is employed as the AU measurement in
the BN model. For each measurement node, a domain expert provides ranges
(usually tight) for p(O;|AU;), which represent accuracy of classifiers.

We use 8000 images from Cohn and Kanade’s DFAT-504 [13]: 20% are sep-
arated for testing and 80% for training (although just part of it is used at each
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time). We work with two data sets: one generated from computer vision mea-
surements (used as evidence for testing) and one from human labeling (used for
training), where uncertain labels are missing (data are incomplete). In Figure 3
we consider training data with 10, 100, 200 and 500 samples, randomly selected
20 times from the training set (results are averaged; standard deviation is below
4 pp. in all cases, mostly below 2 pp.; the graph is in log-scale). We can see
that the constrained maximum entropy is superior in all cases, and that such
superiority begins to vanish as more data are used. Although our main goal is to
compare the learning procedures against each other rather than surpassing the
state-of-the-art methods, we obtain an overall recognition rate (percentage of
correctly classified cases) of about 94% using just 1000 training samples, which
is comparable to state-of-the-art results [17].

T T
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Fig. 3. AU recognition error rate (in log
Fig. 2. Network for the AU recognition scale) on some BN parameter learning ap-
problem. proaches.

4.2 Activity recognition

We also evaluate our approach using DBNs on a human activity recognition
data set captured with a surveillance camera at a parking lot. The data set
contains 110 sequences and we want to classify 7 possible activities: walking,
running, leaving car, entering car, bending down, throwing and looking around.
We first train DBNs for each activity and classify the activity according to the
DBN with best fit for each test case. Their structure is shown in Figure 4.2, with
three hidden nodes for position (Y'), shape (S) and speed (V'), and corresponding
observation nodes. Each hidden node has two states. Temporal links exist from
the time ¢ to time t + 1 for each node. Furthermore, the temporal link between
V't and Y+ encodes the dynamic relationship between speed and position.
The measurements of the observation nodes are obtained from the motion
detection results. We first perform background subtraction to detect the motion
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activity recognition. using many DBN parameter learning approaches.

blob of the object. Position Oy is measured as the distance to the car with
6 discrete values. Speed Oy is evaluated as the change of the blob center in
pixels, which is discretized to 6 states. Shape measurements Og are clustered in
4 features based on the aspect ratio of the bounding rectangle, filling ratio (the
area of the blob with respect to the area of its bounding rectangle) and two first
order moment features [21].

Given general constraints about smoothness, dynamics and physical attributes
of the environment, we create a set of constraints on model parameters. Such
constraints are applied to transitional probabilities of all activities, as they are
general enough to be common to all activities. We note that constraints are ac-
quired from experts and are not tuned to this specific data. We omit specific
details about them because it would drive us far from the goal of this paper.

We randomly choose part of the activity sequences as training data and
use the rest for testing. We compare ML, maximum a posteriori (MAP), and
local maximum entropy, using both the unconstrained and constrained versions.
We point out that other learning techniques do exist, such as regularized ML.
Because we are discussing about a Dirichlet model and because ML with some
regularization produces similar results as MAP, we have chosen to work with the
latter instead. The training sets have 10, 20, 40, 60 and 80 sequences. For each
size, we perform the test 10 times and the average recognition error is presented
in Figure 4.2. It is worth noting that: (i) the use of constraints significantly
decreases the error rate, as may be noted in Figure 4.2 by taking the curves two
by two and analyzing constrained and respective unconstrained versions; (ii)
when large amount of data is available, all methods tend to similar results. We
can see that ML and MAP are already much closer when 80 training sequences
are considered, and the same starts to happen with IDM; (iii) while results
with synthetic data are not conclusive when comparing MAP and IDM with
maximum entropy (the prior applied to MAP was enough there, and MAP was
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even slightly better), here constrained maximum entropy outperforms all others,
for all test cases. This is probably because all priors are considered by the IDM,
while MAP uses a single one. MAP might achieve better results, but that would
strongly depend on the quality of the prior chosen by the expert.

5 Conclusion

This paper presents a framework for parameter learning using the Imprecise
Dirichlet Model and its application to two recognition problems. Domain knowl-
edge in the form of constraints is exploited to improve accuracy. To select a
single (conservative) distribution from the Imprecise Dirichlet Model, maximum
entropy is used. The framework is very fast and guarantees to find the global
optimal solution for complete data. For incomplete data, we propose to use
an adapted version of the Expectation—-Maximization method. Empirical results
with synthetic data support the method. Both with synthetic and real data,
we have compared the method against widely used maximum likelihood and
Bayesian maximum a posteriori estimations, with and without constraints. We
point out that the described method has the advantage of not requiring the
specification of a single prior, as it is done by the MAP estimation. MAP with
a good prior may obtain good results, but that strongly relies on the quality of
such prior. Selecting a single prior is not an easy task when dealing with real
data, and the uniform is used in most cases, which may lead to inferior results.
Using the data to select the prior might overfit the model, resulting in unreliable
results that are only applicable to the specific contexts and data.

Empirical results with real data are treated for two computer vision problems:
a facial action unit recognition problem and an activity recognition problem in
video sequences. The constraints that are used in each problem are described,
which translate the domain knowledge into a mathematical formulation. We
note that the constraints were defined by an expert once and were not tuned.
As expected, results with constraints are superior than those when constraints
are not used. Furthermore, the Imprecise Dirichlet Model shows better accuracy
in all scenarios with real data. Specifically, the single prior of MAP estimation
employed while using real data does not achieve as good results as with syn-
thetic data, and the IDM (which considers all possible priors) outperforms the
other methods. In summary, we point out that (i) constraints are very helpful
when scarce data are available, which is a common situation in computer vision
problems; (i) widely used methods such as maximum likelihood and Bayesian
MAP estimators, which are the most common ideas to learn Bayesian network
parameters, are defeated by the IDM plus maximum entropy when dealing with
real data and constraints, even though they performed well for synthetic data.
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