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Abstract

This paper addresses the problem of learning
structure and parameters of Bayesian and Dynamic
Bayesian networks from data based on the Bayesian
Information Criterion. We describe a procedure to
map the problem of the dynamic case into a corre-
sponding augmented Bayesian network through the
use of structural constraints. Because the algo-
rithm is exact and anytime, it is well suitable for a
structural Ezpectation-Maximization (EM) method
where the only source of approximation is due to the
EM itself. We show empirically that the use a global
mazimizer inside the structural EM is computation-
ally feasible and leads to more accurate models.

1 Introduction

A Bayesian network (BN) is a probabilistic
graphical model that relies on a structured de-
pendency among random variables to represent a
joint probability distribution in a compact and ef-
ficient manner. While BNs are unrelated to time
sequences, Dynamic Bayesian Networks (DBNs)
model temporal processes. Assuming Markovian
and stationary properties, DBNs may be encoded
in a very compact way and inferences are executed
quickly. Learning the structure of these networks
from data is one of the most challenging problems,
specially when data are incomplete.

The problem is to find the best directed acyclic
graph (DAG) according to some score function that
depends on the data [5]. Best exact ideas are based
on dynamic programming [6], and they spend time
and memory proportional to n - 2", where n is the
number of variables, or branch-and-bound (B&B)
techniques [2], with better average but poorer worst
case. For incomplete data sets, the availability of
methods is reduced. The main method is the struc-
tural EM (called simply SEM) [3], which has also
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been investigated in the context of DBNs [4].

This paper aims at learning the structure of BNs
and DBNSs from incomplete data using the Bayesian
Information Criterion (BIC). For the DBN case, we
describe a procedure to map its structural learn-
ing problem into a corresponding augmented BN
through the use of constraints, so that the same
exact algorithm can be employed in both contexts.
Because the B&B algorithm may be stopped at
any moment with an approximate solution, it is
well suitable for a SEM without the huge computa-
tional expense of other exact methods, while keep-
ing global guarantees, and the only source of ap-
proximation is due to the EM method itself. We
show empirically that the use a global maximiza-
tion procedure inside the SEM is computationally
attractive and leads to more accurate models.

2 BNs and DBNs

A BN represents a joint probability distribution
over a collection of random variables. It can be
defined as a triple (G, X, P), where G = (Vg, Eg)
is a DAG with Vg a collection of n nodes asso-
ciated to random variables X (a node per vari-
able), and Eg a collection of arcs; P is a collec-
tion of conditional probabilities p(X;|PA;) where
PA; denotes the parents of X; in the graph (PA;
may be empty), respecting the relations of Eg.
We assume throughout that variables are categor-
ical. In a BN every variable is conditionally in-
dependent of its non-descendants given its par-
ents (Markov condition). This structure induces
a joint probability distribution by the expression
p(X1,...,Xn) = [L;p(X;|PA;). Let r; > 2 be
the number of discrete categories of X;, ¢; the
number of instantiations of the parent set, that
is, ¢ = [lx,epa, > and 6 be the entire vector

of parameters such that 6;;; = p(xﬂpag ), where
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a graph G that maximizes BIC:
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where § and G), t = > (¢ - (r; — 1)), the
number of free parameters, depend on the graph,
and Lp(9) = >, Lp,(0;), where Lp;(6;) =

g":l S ory niji log 0,k is the log-likelihood func-
tion. nyji, indicates how many elements of D con-
tain both z¥ and pag. From now on, the sub-
script D is omitted for simplicity. An important
property of BIC is that it is decomposable, that
is, it can be computed at each node X; sepa-
rately: maxg s(G) = maxg )., s;(PA;), where
Sl(PAZ) = Lz(PAl) —tl(PAz) . 10g2N7 with LZ(PAZ) =
maxg, L;(0;) (0; is the parameter vector related
to X;, so it depends on the choice of PA;), and
t;(PA;) = q; - (r; — 1). Because of this property and
to avoid computing such functions several times, we
create a cache that contains s;(PA;) for each X; and
each parent set PA;. Note that the cache could have
an exponential size on n, as there are 2"~ ! subsets
of {X1,...,X,}\ {X;} to be considered as parent
sets, but the practical size of the cache is very small
(by using the properties described in [2]).

While BNs are not directly related to time,
DBNs are used to model temporal processes. We
assume that the time is discrete and that a Marko-
vian property holds. Thus, if X;; € &} are the vari-
ables at time ¢, we have that p(Xi11]Xp,... X)) =
p(Xix1|X:). Furthermore, the process is assumed
to be stationary, that is, p(X;41|X}) is independent
of t. Given such assumptions, DBNs can be viewed
as two-slice temporal BNs, where at time zero, we
have a standard BN, which we denote B°, and for
slices 1 to T there is another BN (called transitional
BN and denoted simply B) defined over the same
variables but where nodes may have parents on two
consecutive slices, that is, B defines the distribution
P(Xiy1| ).

To learn a DBN, we assume that many tem-
poral sequences of data are available. Thus, a
complete data set D = {Dj,...,Dy} is com-
posed of N sequences, where each D, is com-
posed of instances D, ; = {xlf’lu,t,..wxf[fu’t} for
t = 0,...,T (where T is the total number of
slices/frames apart from the initial one). Note
that there is an implicit order among the elements
of each D,. As conditional probability distribu-
tions for time ¢ > 0 share the same parameters,
we can unroll the DBN to obtain the factorization

p(Xrr) = [T, P°(Xilma) T2, TL p(Xitlmie), where
p°(X;|m;) are the local conditional distributions of
BY, X;+ and m; ; represent the corresponding vari-
ables in time ¢, and p(X;|m; ) are the local dis-
tributions of B. Learning parameters of DBNs is
similar to learning parameters of BNs, but we deal
with counts n,j, for both BY and B. The counts
related to BY are obtained from the first slice of
each sequence, so there are N samples overall, while
counts for B are obtained from the whole time se-
quences, so we have N - T elements to consider
(each sequence has the same size for ease of ex-
pose). The score function of a given structure de-
composes between the score function of B° and the
score function of B, so we look for graphs such that
maxgo g 5(G°) + s(G) =

40 log N log(N - T)

)

1)
where t° and ¢ are respectively the number of free
parameters in B° and B. Counts are obtained from
data separately for the initial and the transitional
BNs, and the problem reduces to the learning prob-
lem in a BN. To learn the structure of a DBN, the
procedure is roughly equivalent. We must take care
of learning both the initial and the transitional net-
works. We develop a transformation of the struc-
ture learning problem to a corresponding structure
learning problem in an augmented BN.

I%%X(LO(QO)— )—I—maax(L(Q)—t

1. Learn B° using the data set {D1,...,Dno}
of the first slice of each sequence. Note that
this is already a standard BN structure learn-
ing and thus we obtain the graph G° for the
first maximization of Equation (1).

2. Create a BN B’ = (G',X’,P’) with twice
as many nodes as B. Denote the nodes as
(X1,..., X0, X1,...,X]). Construct a new
data set D’ that is composed by IV -T elements
{Vt(Dl,tfly Dl,t)7 cee 7vt(DN,t717 DN,t)} for
every time sequence 1 < u < N and every
slice 0 < t < T. Note that each (Dy -1, Dyt)
is a complete sample for the variables of B,
with elements of two consecutive slices.

3. Include structural constraints as follows:
Vicicn are(Xi, X)) (2)
Vi<i<n tndegree(X;, 0, eq) (3)

Equation (2) forces the time relation between
the same variable in consecutive time slices.
This constraint might be discarded if someone



does not want each variable to be correlated
to itself of the past slice. Equation (3) forces
the variables Xi,...,X,, to have no parents.
These structural constraints are imposed dur-
ing the construction of the cache of scores so
only valid parent sets are stored.

4. Learn B’ using the data set D’ with the BN
structure learning procedure. Note that the
parent sets of Xq,...,X,, are already fixed to
be empty, so the output graph will maximize

/ lOg(N ) T)
where L;(6}) is the log-likelihood of node X/
and t = ), t/ is the number of free parameters
in the nodes X7,...,X,,. This holds because
of the decomposability of the score function
among nodes, so that the scores of the nodes
Xi,..., X, are fixed and can be removed from
the maximization (they are constant).

5. Finally, we take the subgraph of G’ correspond-
ing to the variables X7, ..., X/, to be the graph
of the transitional BN B. This subgraph has
arcs among X1,...,X,, (which are arcs corre-
lating variables of the same time slice) as well
as arcs from the previous slice to them.

Therefore, after applying this transformation,
the structure learning problem in a DBN roughly
becomes two calls to the structure learning in a BN.

3 Incomplete Data

We assume in this paper that all variables (even
hidden ones) have known domains. The most com-
mon situation is to assume that values are missing
at random, so that we marginalize to obtain a func-
tion of the observed variables. However, this func-
tion becomes hard to evaluate, and other problems
arise: for instance, the ideas to build a cache of
local scores cannot be applied anymore. Another
solution is the EM algorithm, which was extended
to work on the structure learning problem [3]. The
idea is to use the E-step to compute the expected
counts (which is a sufficient statistics for the prob-
lem) given the current structure of the network,
and then apply such expected counts to learn a new
structure. This is done iteratively until no improve-
ment in the structure or parameters is possible. A
possible version of the algorithm is as follows (there
are other slightly different versions, e.g. step 2a
may be replaced by a generalized EM):

1. Choose initial G° and parametrization 6°.
2. For z =0,1,... until there is no improvement:

(a) Run the parameter EM method to find a
new parametrization # using the structure
G# and the parameters 6.

(b) Run the structure learning method to find
G*#t1 and 6#+! that maximizes the score
function. Use the current expected counts
of the variable from G* and 6.

As long as the structure learning finds an im-
proving solution, the method increases the score at
each iteration, and so it converges. Until recently
exact methods to find the best structure were sim-
ply prohibitive unless for toy examples, hence struc-
ture EM has been developed using a Generalized
EM idea and step 2b was not global but an im-
proving solution was enough. Still, if we use an
approximate method such as hill climbing, we may
decide to stop the search prematurely while in fact
there was an improving solution that was not found
by the approximate method. The use of a global
method solves this situation, and we can prove that
each iteration obtains a greater score until a sta-
tionary point is found. If an approximate method
is used, one can only achieve the same result condi-
tional on finding an improving during step 2b. The
source of approximation in this enhanced structure
EM is due solely to the use of the EM, which is in-
trinsic of the method. Therefore, this SEM proce-
dure fully resembles the EM for learning parameters
of networks of fixed structure. While the parame-
ter EM has a closed form solution for the M-step,
the structural learning idea presented here is not
even polynomial. However, the B&B method is ef-
fective to find improving structures because of its
anytime property, as we can stop it after finding
one. As we will see in Section 4, the time is empir-
ically dominated by the E-step and the differences
between running only an approximate method are
not large. Other exact methods [6, 7] are not any-
time and each M-step would be very expensive.

4 Experiments

We use data sets of the UCI repository [1]. Con-
tinuous variables are discretized over the mean into
binary variables. Furthermore, we introduce 20% of
missing data (randomly chosen) in each data set:
adult (15 vars and 30162 instances), car (7 vars
and 1728 instances) letter (17 vars and 20000 in-
stances), mushroom (23 vars and 1868 instances),



nursery (9 vars and 12960 instances), Wisconsin
Diagnostic Breast Cancer or wdbc (31 vars and 569
instances), zoo (17 vars and 101 instances).

Table 1. Comparison between methods on
UCI data sets using BNs. 20% of the data
are missing at random.

BIC score Time(min)
Network B&B HC B&B HC
adult -240415  -241017 188 185
car -10458 -10888 3 3
letter -187430  -188483 250 191
mushr -10505.0  -11640.7 31 19
nursery -95367.6  -95367.6 28 27
wdbc -2953.1  -2964.2 43 28
700 -657.2 -685.5 1 1

Table 2. Comparison between methods on
synthetic data using DBNs. 20% of the
data are missing at random.

Method BIC Time Mem
B&B -2268.2 205.7sec  559.5KB
HC -2311.1 197.8sec  80.4KB

Table 1 shows the results of SEM using the exact
B&B method and the hill-climbing (HC) idea. Re-
sults of SEM with the B&B are better than those
with HC in all but the nursery data set (equal in
this case), which is case with the smallest search
space by far. This is an expected behavior because
large search spaces make the problem harder and
the HC more susceptible to get trapped in a lo-
cal maximum. Although the differences in the BIC
score are not large, they happen constantly, which
shows that it is usual to get trapped in local max-
ima. Eventually the differences might be large in
some domains, as the method provides no guaran-
tees. The extra cost of running the SEM with the
B&B is affordable, at least for these data sets. It
is worth noting that other exact methods, e.g. [7],
have expected time of a single M-step for the data
set wdbc of around four days.

For DBNs, we have run some experiments with
synthetic data sets with 8 variables, 10 sequences
and 50 slices per sequence, as shown in Table 2.
The difference in time to run the SEM with B&B
or hill-climbing is negligible, still the BIC score ob-
tained with B&B is recurrently better (around 2%
of improvement). The obtained results are in ac-

cordance with the results obtained for BNs, as ex-
pected. Overall, the gain is not large, but it comes
without a significant computational cost.

5 Conclusions

This paper describes an idea to learn the struc-
ture of BNs and DBNs from incomplete data. We
present a principled algorithm to translate the
DBN learning problem in an equivalent BN learn-
ing problem. The exact B&B procedure guarantees
global optimality of the BIC score and is anytime,
which is specially important when we integrate it
with an EM method to treat incomplete data sets.
B&B ensures that the maximization step of EM is
never trapped by a local optimum, and the anytime
property allows the use of a generalized EM to re-
duce considerably the computational cost. Hence,
the only source of approximation in this enhanced
SEM method is intrinsic to the EM idea itself. We
show in the experiments that our formulation has
improved the SEM solutions when compared to a
method that employs hill-climbing. As far as we
know, this is the first attempt that brings the SEM
method closer to the parameter EM method (in the
sense of using an exact maximization step).
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